Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/ \
1 3
Output: true
Example 2:
5 / \ 1 4 / \ 3 6 Output: false Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value is 5 but its right child's value is 4.
题目链接:https://leetcode.com/problems/validate-binary-search-tree/
题目分析:栈中序
3ms,时间击败7%,最快是递归做法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
if (root == null || (root.left == null && root.right == null)) {
return true;
}
TreeNode pre = null;
Stack<TreeNode> stk = new Stack<>();
while (root != null || !stk.empty()) {
while (root != null) {
stk.add(root);
root = root.left;
}
if (!stk.empty()) {
root = stk.peek();
stk.pop();
if (pre == null) {
pre = root;
} else if (pre.val >= root.val) {
return false;
}
pre = root;
root = root.right;
}
}
return true;
}
}

本文探讨了如何判断一个二叉树是否为有效的二叉搜索树,通过中序遍历的方法,确保左子树的所有节点小于根节点,右子树的所有节点大于根节点,并且左右子树也必须是二叉搜索树。
516

被折叠的 条评论
为什么被折叠?



