HDU 1869 六度分离 (Floyd模板题)

本文介绍了一种通过图算法验证六度分离理论的方法。利用Floyd算法计算任意两点间的最短路径长度,判断是否满足六度分离理论的要求。


六度分离

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 4931    Accepted Submission(s): 1982


Problem Description
1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。

Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。
 

Input
本题目包含多组测试,请处理到文件结束。
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。
除了这M组关系,其他任意两人之间均不相识。
 

Output
对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。
 

Sample Input
  
8 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 8 8 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0
 

Sample Output
  
Yes Yes
 
Author
linle
 
Source
2008杭电集训队选拔赛——热身赛

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1869

题目大意:中文题不解释

题目分析:给个图和一些连通关系,如果任意两点可达则算其距离,距离大于7则说明不成立,这里用Floyd最方便,模板题。

#include <cstdio>
#include <cstring>
int const MAX = 105;
int const INF = 0xfffff;
int n, m, map[MAX][MAX];

void Floyd()
{
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
            for(int k = 0; k < n; k++)
                if(map[j][i] + map[i][k] < map[j][k])
                    map[j][k] = map[j][i] + map[i][k];
}

void Init()
{
    for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
            i == j ? map[i][j] = 0 : map[i][j] = INF;
}

int main()
{
    int x, y;
    bool flag;
    while(scanf("%d %d", &n, &m) != EOF)
    {
        Init();
        flag = false;
        for(int i = 0; i < m; i++)
        {
            scanf("%d %d", &x, &y);
            map[x][y] = map[y][x] = 1;
        }
        Floyd();
        for(int i = 0; i < n && !flag; i++)
            for(int j = 0; j < n; j++)
                if(map[i][j] > 7)
                    flag = true;
        if(flag)
            printf("No\n");
        else 
            printf("Yes\n");
    }
}


 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值