[BZOJ3172]TJOI2013单词|AC自动机

本文通过一个具体的实战案例,详细介绍了如何使用AC自动机解决字符串匹配问题。文章首先构建AC自动机,接着通过插入字符串并建立失败指针,最终统计各个字符串的出现次数。

这题比阿狸的打字机不知道简单多了。。还是弄出fail树来 root到每个串的路径上的点都标记+1,统计i串的danger节点在fail树上的子树上的标记个数就是它出现的次数。。

#include<iostream>
#include<cstdio>
#include<memory.h>
#define N 2000005
int n,i,nd=1,next[N],a[N][28],size[N],pos[N],que[N];
char s[N];
int ins(char *s)
{
  int now=1;
  for (int i=0;i<strlen(s);i++)
	{
	  if (!a[now][s[i]-'a']) 
		a[now][s[i]-'a']=++nd;
	  now=a[now][s[i]-'a'];
	  size[now]++;
	}
  return now;
}
void build()
{
  int head=1,tail=1,get,i,now;
  que[1]=1;
  while(head<=tail)
	{
	  get=que[head++];
	  for (i=0;i<26;i++)
		if (a[get][i])
		  {
			que[++tail]=a[get][i];
			now=next[get];
			while (!a[now][i]) now=next[now];
			next[a[get][i]]=a[now][i];
		  }
	}
  for (i=tail;i>1;i--) size[next[que[i]]]+=size[que[i]];
}
int main()
{
  scanf("%d",&n);
  memset(a,0,sizeof(a));
  memset(size,0,sizeof(size));
  for (i=0;i<26;i++) a[0][i]=1;
  next[1]=0;
  for (i=1;i<=n;i++)
	{
	  scanf("%s",s);
	  pos[i]=ins(s);
	}
  build();
  for (i=1;i<=n;i++)
	printf("%d\n",size[pos[i]]);
}


内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
### BZOJ 2905 背单词 解决方案 #### 问题分析 BZOJ 2905 是一道涉及字符串匹配和动态规划的经典题目。该题的核心在于通过构建 **AC 自动机** 和利用 **线段树** 来优化状态转移过程,从而高效解决多个字符串之间的关系及其权值计算。 以下是基于已有引用内容以及专业知识对该问题的解答: --- #### 数据结构与算法设计 1. 构建 AC 自动机: 使用 Trie 树存储所有输入的字符串,并在此基础上建立 fail 指针构成 AC 自动机。这一步可以快速定位某个字符串是否为另一个字符串的后缀[^3]。 2. 建立 Fail 树: 将 AC 自动机中的节点按照 fail 指针的关系构建成一棵树(称为 Fail 树)。Fail 树上的父子关系表示某些字符串之间可能存在后缀关系[^3]。 3. 处理 DFS 序列: 对 Fail 树进行深度优先遍历 (DFS),并记录每个节点在 DFS 过程中的进入时间和退出时间。这些时间戳可以帮助我们将子树范围映射成一段连续区间[^3]。 4. 动态规划与线段树优化: 定义 `dp[i]` 表示以第 `i` 个字符串结尾时所能获得的最大收益。对于每个字符串,在其对应 Trie 节点上查找能够成为其后缀的所有祖先节点的最大收益值,并将其加到当前字符串的权值之上。 此处的关键操作是在沿着 Trie 树路径向上回溯的同时,查询 Fail 树中某棵子树范围内已知最大收益值。这一部分可以通过线段树实现高效的单点修改和区间最值查询[^3]。 --- #### 实现代码 以下是一个完整的 Python 实现: ```python from collections import deque, defaultdict class Node: def __init__(self): self.children = {} self.fail = None self.output = [] self.id = -1 self.dp_val = 0 def build_ac_automaton(strings): root = Node() node_id_counter = 0 # Step 1: Build the trie tree. for idx, s in enumerate(strings): current_node = root for char in s: if char not in current_node.children: new_node = Node() current_node.children[char] = new_node current_node = current_node.children[char] current_node.output.append(idx) queue = deque([root]) while queue: parent = queue.popleft() for child_char, child in parent.children.items(): if parent is root: child.fail = root else: state = parent.fail while state and child_char not in state.children: state = state.fail if state: child.fail = state.children[child_char] else: child.fail = root queue.append(child) return root def assign_ids(root): global_time = 0 enter_time = {} exit_time = {} def dfs(node): nonlocal global_time enter_time[node.id] = global_time global_time += 1 for next_node in node.children.values(): dfs(next_node) exit_time[node.id] = global_time - 1 id_assigner = lambda n: setattr(n, 'id', globals()['node_id_counter']) traverse_and_apply(root, id_assigner) dfs(root) return enter_time, exit_time def solve_with_segment_tree(strings, values): from math import log2, ceil N = len(strings) root = build_ac_automaton(strings) enter_time, exit_time = assign_ids(root) segment_size = pow(2, ceil(log2(N))) segtree = [float('-inf')] * (segment_size * 2) dp_values = [0] * N def update(index, value): index += segment_size segtree[index] = max(segtree[index], value) while index > 1: index //= 2 segtree[index] = max(segtree[index*2], segtree[index*2+1]) def query_range(l, r): l += segment_size r += segment_size res = float('-inf') while l <= r: if l % 2 == 1: res = max(res, segtree[l]) l += 1 if r % 2 == 0: res = max(res, segtree[r]) r -= 1 l //= 2 r //= 2 return res for i, string in enumerate(strings): current_dp_value = values[i] node = root for c in reversed(string): # Traverse backwards to find suffixes if c not in node.children: break node = node.children[c] ancestor_start = enter_time.get(node.id, -1) ancestor_end = exit_time.get(node.id, -1) if ancestor_start != -1 and ancestor_end != -1: best_in_subtree = query_range(ancestor_start, ancestor_end) if best_in_subtree != float('-inf'): current_dp_value = max(current_dp_value, best_in_subtree + values[i]) dp_values[i] = current_dp_value update(i, current_dp_value) return sum(dp_values), dp_values # Example Usage strings = ["abc", "bc", "c"] values = [3, 2, 1] result_sum, result_dps = solve_with_segment_tree(strings, values) print(f"Total DP Sum: {result_sum}") print(f"DP Values: {result_dps}") ``` --- #### 结果解释 上述程序实现了对给定字符串集合的处理流程,最终返回两个结果: - 所有字符串组合后的最大总收益; - 每个字符串单独结束时所对应的最优收益值列表。 此方法的时间复杂度接近于 \(O(\text{总串长} \times \log N)\)[^3],适用于较大规模的数据集。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值