Model descriptions
-
YOLOv4
- The model in YOLOv4 paper.
- Backbone - CSPDarknet53 with Mish activation
- Neck - PANet with Leaky activation
- Plugin Modules - SPP
- V100 FPS - 62@608x608, 83@512x512
- BFLOPs - 128.5@608x608
-
YOLOv4-Leaky
- Backbone - CSPDarknet53 with Leaky activation
- Neck - PANet with Leaky activation
- Plugin Modules - SPP
- BFLOPs - 128.5@608x608
-
YOLOv4-SAM-Leaky
- Backbone - CSPDarknet53 with Leaky activation
- Neck - PANet with Leaky activation
- Plugin Modules - SPP, SAM(Spatial Attention Module)空间注意模块
- BFLOPs - 130.7@608x608
-
YOLOv4-Mish
- Backbone - CSPDarknet53 with Mish activation
- Neck - PANet with Mish activation
- Plugin Modules - SPP
- BFLOPs - 128.5@608x608
-
YOLOv4-SAM-Mish
- Backbone - CSPDarknet53 with Mish activation
- Neck - PANet with Mish activation
- Plugin Modules - SPP, SAM
- V100 FPS - 61@608x608, 81@512x512
- BFLOPs - 130.7@608x608
-
YOLOv4-CSP
- will update
- Backbone - CSPDarknet53 with Mish activation
- Neck - CSPPANet with Mish activation
- Plugin Modules - SPP
-
YOLOv4-CSP-SAM
- will update
- Backbone - CSPDarknet53 with Mish activation
- Neck - CSPPANet with Mish activation
- Plugin Modules - SPP, SAM
本文详细介绍了YOLOv4系列目标检测模型的不同版本,包括YOLOv4、YOLOv4-Leaky、YOLOv4-SAM-Leaky、YOLOv4-Mish、YOLOv4-SAM-Mish、YOLOv4-CSP和YOLOv4-CSP-SAM。每个版本都基于CSPDarknet53骨干网络,并结合了PANet、SPP等组件,部分版本还加入了SAM空间注意力模块,旨在提高检测精度和速度。
681

被折叠的 条评论
为什么被折叠?



