作业:19数据结构邻接表的广度和深度遍历

这篇博客介绍了如何使用C语言实现图的邻接矩阵和邻接表数据结构,并展示了广度优先遍历(BFS)算法。博主首先定义了图的结构,包括邻接矩阵和队列的初始化、入队、出队等操作。接着,将邻接矩阵转换为邻接表,并实现了打印邻接表和宽度优先遍历的功能。最后,通过一个具体的图实例展示了遍历过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

提示:该blog仅为完成作业,大佬请绕路


老师的代码

/**
 * Adjacency list for directed graph.
 * 
 * @author Fan Min minfanphd@163.com.
 */
#include <stdio.h>
#include <malloc.h>
#define QUEUE_SIZE 10

/*************** Copied code begins *****************/

int* visitedPtr;

/**
 * The structure of a graph.
 */
typedef struct Graph{
	int** connections;
	int numNodes;
} *GraphPtr;

/**
 * Initialize a graph.
 */
GraphPtr initGraph(int paraSize, int** paraData) {
	int i, j;
	GraphPtr resultPtr = (GraphPtr)malloc(sizeof(struct Graph));
	resultPtr -> numNodes = paraSize;
	//resultPtr -> connections = (int**)malloc(paraSize * paraSize * sizeof(int));
	resultPtr -> connections = (int**)malloc(paraSize * sizeof(int*));
	for (i = 0; i < paraSize; i ++) {
		resultPtr -> connections[i] = (int*)malloc(paraSize * sizeof(int));
		for (j = 0; j < paraSize; j ++) {
			resultPtr -> connections[i][j] = paraData[i][j];
		}//Of for j
	}//Of for i
	
	return resultPtr;
}//Of initGraph

/**
 * A queue with a number of indices.
 */
typedef struct GraphNodeQueue{
	int* nodes;
	int front;
	int rear;
}GraphNodeQueue, *QueuePtr;

/**
 * Initialize the queue.
 */
QueuePtr initQueue(){
	QueuePtr resultQueuePtr = (QueuePtr)malloc(sizeof(struct GraphNodeQueue));
	resultQueuePtr->nodes = (int*)malloc(QUEUE_SIZE * sizeof(int));
	resultQueuePtr->front = 0;
	resultQueuePtr->rear = 1;
	return resultQueuePtr;
}//Of initQueue

/**
 * Is the queue empty?
 */
bool isQueueEmpty(QueuePtr paraQueuePtr){
	if ((paraQueuePtr->front + 1) % QUEUE_SIZE == paraQueuePtr->rear) {
		return true;
	}//Of if

	return false;
}//Of isQueueEmpty

/**
 * Add a node to the queue.
 */
void enqueue(QueuePtr paraQueuePtr, int paraNode){
	if ((paraQueuePtr->rear + 1) % QUEUE_SIZE == paraQueuePtr->front % QUEUE_SIZE) {
		printf("Error, trying to enqueue %d. queue full.\r\n", paraNode);
		return;
	}//Of if
	paraQueuePtr->nodes[paraQueuePtr->rear] = paraNode;
	paraQueuePtr->rear = (paraQueuePtr->rear + 1) % QUEUE_SIZE;
}//Of enqueue

/**
 * Remove an element from the queue and return.
 */
int dequeue(QueuePtr paraQueuePtr){
	if (isQueueEmpty(paraQueuePtr)) {
		printf("Error, empty queue\r\n");
		return NULL;
	}//Of if

	paraQueuePtr->front = (paraQueuePtr->front + 1) % QUEUE_SIZE;

	//printf("dequeue %d ends.\r\n", paraQueuePtr->nodes[paraQueuePtr->front]);
	return paraQueuePtr->nodes[paraQueuePtr->front];
}//Of dequeue

/*************** Copied code ends *****************/

/**
 * Aajacent node.
 */
typedef struct AdjacencyNode {
	int column;
	AdjacencyNode* next;
}AdjacencyNode, *AdjacentNodePtr;

/**
 * Aajacent list.
 */
typedef struct AdjacencyList {
	int numNodes;
	AdjacencyNode* headers;
}AdjacencyList, *AdjacencyListPtr;

/**
 * Construct an adjacent list.
 */
AdjacencyListPtr graphToAdjacentList(GraphPtr paraPtr) {
	//Allocate space.
	int i, j, tempNum;
	AdjacentNodePtr p, q;
	tempNum = paraPtr->numNodes;
	AdjacencyListPtr resultPtr = (AdjacencyListPtr)malloc(sizeof(struct AdjacencyList));
	resultPtr->numNodes = tempNum;
	resultPtr->headers = (AdjacencyNode*)malloc(tempNum * sizeof(struct AdjacencyNode));
	
	//Fill the data.
	for (i = 0; i < tempNum; i ++) {
		//Initialize headers.
		p = &(resultPtr->headers[i]);
		p->column = -1;
		p->next = NULL;

		for (j = 0; j < tempNum; j ++) {
			if (paraPtr->connections[i][j] > 0) {
				//Create a new node.
				q = (AdjacentNodePtr)malloc(sizeof(struct AdjacencyNode));
				q->column = j;
				q->next = NULL;

				//Link.
				p->next = q;
				p = q;
			}//Of if
		}//Of for j
	}//Of for i

	return resultPtr;
}//Of graphToAdjacentList

/**
 * Print an adjacent list.
 */
void printAdjacentList(AdjacencyListPtr paraPtr) {
	int i;
	AdjacentNodePtr p;
	int tempNum = paraPtr->numNodes;

	printf("This is the graph:\r\n");
	for (i = 0; i < tempNum; i ++) {
		p = paraPtr->headers[i].next;
		while (p != NULL) {
			printf("%d, ", p->column);
			p = p->next;
		}//Of while
		printf("\r\n");
	}//Of for i
}//Of printAdjacentList

/**
 * Width first tranverse.
 */
void widthFirstTranverse(AdjacencyListPtr paraListPtr, int paraStart){
	printf("width first \r\n");
	//Use a queue to manage the pointers
	int i, j, tempNode;
	AdjacentNodePtr p;
	i = 0;

	//Initialize data
	visitedPtr = (int*) malloc(paraListPtr->numNodes * sizeof(int));
	
	for (i = 0; i < paraListPtr->numNodes; i ++) {
		visitedPtr[i] = 0;
	}//Of for i

	QueuePtr tempQueuePtr = initQueue();
	printf("%d\t", paraStart);
	visitedPtr[paraStart] = 1;
	enqueue(tempQueuePtr, paraStart);
	// printf("After enqueue\r\n");
	while (!isQueueEmpty(tempQueuePtr)) {
		// printf("First while\r\n");
		tempNode = dequeue(tempQueuePtr);

		for (p = &(paraListPtr->headers[tempNode]); p != NULL; p = p->next) {
			j = p->column;
			// printf("j = %d \r\n", j);
			if (visitedPtr[j]) 
				continue;

			printf("%d\t", j);
			visitedPtr[j] = 1;
			enqueue(tempQueuePtr, j);
		}//Of for
	}//Of while
	printf("\r\n");
}//Of widthFirstTranverse

/**
 * Test graph tranverse.
 */
void testGraphTranverse() {
	int i, j;
	int myGraph[5][5] = { 
		{0, 1, 0, 1, 0},
		{1, 0, 1, 0, 1}, 
		{0, 1, 0, 1, 1}, 
		{1, 0, 1, 0, 0}, 
		{0, 1, 1, 0, 0}};
	int** tempPtr;
	printf("Preparing data\r\n");
		
	tempPtr = (int**)malloc(5 * sizeof(int*));
	for (i = 0; i < 5; i ++) {
		tempPtr[i] = (int*)malloc(5 * sizeof(int));
	}//Of for i
	 
	for (i = 0; i < 5; i ++) {
		for (j = 0; j < 5; j ++) {
			//printf("i = %d, j = %d, ", i, j);
			//printf("%d\r\n", tempPtr[i][j]);
			tempPtr[i][j] = myGraph[i][j];
			//printf("i = %d, j = %d, %d\r\n", i, j, tempPtr[i][j]);
		}//Of for j
	}//Of for i
 
	printf("Data ready\r\n");
	
	GraphPtr tempGraphPtr = initGraph(5, tempPtr);
	AdjacencyListPtr tempListPtr = graphToAdjacentList(tempGraphPtr);

	printAdjacentList(tempListPtr);

	widthFirstTranverse(tempListPtr, 4);
}//Of testGraphTranverse

/**
 * Entrance.
 */
int main(){
	testGraphTranverse();
	return 1;
}//Of main

我的代码

#include<stdio.h>
#include<stdlib.h>

#define MAXVEX 7   //代表最大顶点数
#define INFINITY 65535 //代表无穷大

typedef struct GraphNode
{
	int index;    //下标
	struct GraphNode *next;  //指向下一个的指针
}GraphNode;

typedef struct Gra
{
	char c;  //顶点元素
	GraphNode *first ;
}Gra;

typedef struct Graph
{
	Gra vex[MAXVEX];
	int numvex,edge;  //顶点元素和边的数量
}Graph;

//创建一个队列,用来广度优先遍历
typedef struct QNode
{
	int data;
	struct QNode *next;
}QNode,*Queueprt;

typedef struct
{
	Queueprt front,rear;   
}LinkQueue;

//队列的初始化
void InitQueue(LinkQueue *q)
{
	q->front=q->rear=(Queueprt)malloc(sizeof(QNode));
	q->front->next=NULL;
}

//入队列
void EnQueue(LinkQueue *q,int e)
{
	Queueprt p;
	p=(Queueprt)malloc(sizeof(QNode));
	p->data=e;
	q->rear->next=p;
	p->next=NULL;
	q->rear=p;
}

//出队列
void DeQueue(LinkQueue *q,int *e)
{
	if(q->front==q->rear)
	{
		return;
	}
	Queueprt p;
	p=q->front->next;
	*e = p->data;             
	q->front->next=p->next;
	if(p==q->rear)
	{
		q->rear=q->front;
	}
	free(p);
}

//判断队列是否为空
int QueueEmpty(LinkQueue *q)
{
	if(q->front==q->rear)
	{
		return 1;
	}
	else
	{
		return 0;
	}
}
//创建图
void create(Graph *g)
{
	int i,j,m,n;
	GraphNode *p,*q;
	printf("输入顶点元素的数量和边的数量:\n");
	scanf("%d %d",&(g->numvex),&(g->edge));
	printf("输入顶点元素:\n");
	for(i=0;i<g->numvex;i++)
	{
		getchar();
		scanf("%c",&(g->vex[i].c) );
		g->vex[i].first=NULL;
	}
	//建立边集
	printf("输入边两边顶点的下标:\n");
	for(j=0;j<g->edge;j++)
	{
		scanf("%d %d",&m,&n);
		p=(GraphNode *)malloc(sizeof(GraphNode));
		p->index=m;
		p->next=g->vex[n].first;
		g->vex[n].first=p;          //这里是把first移到p


		q=(GraphNode *)malloc(sizeof(GraphNode));
		q->index=n;
		q->next=g->vex[m].first;       
		g->vex[m].first=q;
	}	
}

void print(Graph *g)
{
	int i;
	GraphNode *p;
	for(i=0;i<g->numvex;i++)
	{
		p=g->vex[i].first;
		while(p)
		{
			printf("(%c,%c)",g->vex[i].c,g->vex[p->index].c);
			p=p->next;
		}
		printf("\n");
	}
}

//DFS遍历

void DFS(Graph *g,int i,int *visited)
{
	GraphNode *p;
	visited[i]=1;
	printf("%c ",g->vex[i].c);
	p=g->vex[i].first;
	while( p )
	{
		if(!visited[p->index])
		{
			DFS(g,p->index,visited);
		}
		p=p->next;
	}

}

void TraDFS(Graph *g)
{
	int i;
	int visited[MAXVEX];
	for(i=0;i<MAXVEX;i++)
	{
		visited[i]=0;
	}
	for(i=0;i<g->numvex;i++)
	{
		if(!visited[i])
		{
			DFS(g,i,visited);
		}
	}

}

//BFS遍历
void TraBFS(Graph *g)
{
	int i,j;
	LinkQueue q;
	int visited[MAXVEX];
	for(i=0;i<MAXVEX;i++)
	{
		visited[i]=0;
	}
	InitQueue(&q);
	for(i=0;i<g->numvex;i++)
	{
		if(!visited[i])
		{
			printf("%c ",g->vex[i].c);
			visited[i]=1;
			EnQueue(&q, i);
			while(!QueueEmpty(&q))
			{
				DeQueue(&q,&i);
				GraphNode *p = g->vex[i].first;
				while( p )
				{
					if(!visited[p->index])
					{
						printf("%c ",g->vex[p->index].c);
						visited[p->index]=1;
						EnQueue(&q,p->index);
					}
					p=p->next;
				}
			}

		}
	}

}

int main(){
	
	Graph g;
	create(&g);
	print(&g);
	printf("DFS遍历结果:\n");
	TraDFS(&g);
	printf("\nBFS遍历结果为:\n");
	TraBFS(&g);
	printf("\n");
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值