【图像去雾】基于matlab自适应局部中值平滑图像去雾【含Matlab源码 2290期】

文章介绍了Retinex理论在图像处理中的应用,特别是其基本思想和图像增强的目的。此外,文章提到了基于暗通道先验的去雾算法,这是计算机视觉领域的一个著名方法,并提供了部分Matlab源代码示例。内容还包括Matlab版本信息和相关参考文献,以及图像处理、路径规划、机器学习等多个领域的技术咨询服务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
Matlab图像处理(进阶版)
付费专栏Matlab图像处理(初级版)

⛳️关注优快云海神之光,更多资源等你来!!

⛄一、简介

1 Retinex
1.1 理论
Retinex理论始于Land和McCann于20世纪60年代作出的一系列贡献,其基本思想是人感知到某点的颜色和亮度并不仅仅取决于该点进入人眼的绝对光线,还和其周围的颜色和亮度有关。Retinex这个词是由视网膜(Retina)和大脑皮层(Cortex)两个词组合构成的.Land之所以设计这个词,是为了表明他不清楚视觉系统的特性究竟取决于此两个生理结构中的哪一个,抑或是与两者都有关系。
Land的Retinex模型是建立在以下的基础之上的:

(1)真实世界是无颜色的,我们所感知的颜色是光与物质的相互作用的结果。我们见到的水是无色的,但是水膜—肥皂膜却是显现五彩缤纷,那是薄膜表面光干涉的结果;
(2)每一颜色区域由给定波长的红、绿、蓝三原色构成的;
(3)三原色决定了每个单位区域的颜色。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。如下图所示,观察者所看到的物体的图像S是由物体表面对入射光L反射得到的,反射率R由物体本身决定,不受入射光L变化。
在这里插入图片描述
Retinex理论的基本假设是原始图像S是光照图像L和反射率图像R的乘积,即可表示为下式的形式:
在这里插入图片描述
基于Retinex的图像增强的目的就是从原始图像S中估计出光照L,从而分解出R,消除光照不均的影响,以改善图像的视觉效果,正如人类视觉系统那样。在处理中,通常将图像转至对数域,即
在这里插入图片描述
从而将乘积关系转换为和的关系:
在这里插入图片描述
Retinex方法的核心就是估测照度L,从图像S中估测L分量,并去除L分量,得到原始反射分量R,即:
在这里插入图片描述
函数 f(x) 实现对照度L的估计(可以去这么理解,实际很多都是直接估计r分量)。

2 Retinex理论的理解
如果大家看论文,那么在接下去的篇幅当中,肯定会介绍两个经典的Retinex算法:基于路径的Retinex以及基于中心/环绕Retinex。在介绍两个经典的Retinex算法之前,我先来讲一点个人的理解,以便第一次接触该理论的朋友能够更快速地理解。当然,如果我的理解有问题,也请大家帮忙指出。
Retinex理论就我理解,与降噪类似,该理论的关键就是合理地假设了图像的构成。如果将观察者看到的图像看成是一幅带有乘性噪声的图像,那么入射光的分量就是一种乘性的,相对均匀,且变换缓慢的噪声。Retinex算法所做的就是合理地估计图像中各个位置的噪声,并除去它。
在极端情况下,我们大可以认为整幅图像中的分量都是均匀的,那么最简单的估计照度L的方式就是在将图像变换到对数域后对整幅图像求均值。因此,我设计了以下算法来验证自己的猜想,流程如下:
(1) 将图像变换到对数域
在这里插入图片描述
(2) 归一化去除加性分量
在这里插入图片描述
(3) 对步骤3得到的结果求指数,反变换到实数域
在这里插入图片描述

2 暗通道
2.1 何恺明的暗通道先验(dark channel prior)去雾算法是CV界去雾领域很有名的算法,关于该算法的论文"Single Image Haze Removal Using Dark Channel Prior"一举获得2009年CVPR最佳论文。作者统计了大量的无雾图像,发现一条规律:每一幅图像的RGB三个颜色通道中,总有一个通道的灰度值很低,几乎趋向于0。基于这个几乎可以视作是定理的先验知识,作者提出暗通道先验的去雾算法。
其暗通道的数学表达式为:
在这里插入图片描述
在这里插入图片描述
2.1 暗通道去雾原理
在这里插入图片描述
在这里插入图片描述

⛄二、部分源代码

%注意,可以观察到所获得结果的细微差异

%在原始的快速C代码和此matlab实现之间

%

%输入:

%orig是O和1之间的双倍原始图像,

%p是恢复百分比

%sv是假定白色对象的最大大小

%对于没有白平衡,平衡是负的,

%对于全局白平衡,平衡为0.0,

%对于本地白平衡,平衡高于0.0:

%平衡=0.1导致朝向(1,1,

%balance=0.5可以用作良好的起始值,

%balance=1.0删除大部分颜色

%smax是自适应过滤的最大窗口大小

%当smax为1时,不执行自适应滤波

%smax可以用于非常嘈杂的原始图像

%gfactor是最终伽马校正过程中的一个额外因素

%更丰富多彩的结果

%

%

%输出:

%resto是可见性恢复后获得的图像
function resto=visibresto(orig, sv, p, balance, smax, gfactor)

% 默认参数
if (nargin < 6)
gfactor=1.3; % 最终伽马校正期间额外因子的默认值
end
if (nargin < 5)
smax=1; % 默认情况下,没有自适应过滤
end
if (nargin < 4)
balance=-1.0; %默认情况下,无白平衡
end
if (nargin < 3)
p = 0.95; %默认情况下,恢复百分比为95%
end
if (nargin < 2)
sv = 11; % 默认情况下,假设白色对象的大小sv=11
end
if (nargin < 1)
msg1 = sprintf(‘%s: Not input.’, upper(mfilename));
eid = sprintf(‘%s:NoInputArgument’,mfilename);
error(eid,‘%s %s’,msg1);
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 齐卉,孙超,苏通,马俊智,朱勇杰,丁建军.基于MATLAB的图像去雾技术研究[J].江汉大学学报(自然科学版). 2020,48(06)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值