💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版)
②付费专栏Matlab图像处理(初级版)
⛳️关注优快云海神之光,更多资源等你来!!
⛄一、基于DCT变换的图像融合算法简介
在图像融合过程中,最主要的就是如何提取低高频系数以及低高频系数的融合准则。基于DCT变换的图像融合算法原理如图2所示。
图2 DCT融合算法原理
算法步骤如下。
步骤1精确配准待融合的源图像。
步骤2采用分块的方法将参与融合的每幅大小为M×N的源图像分别分成m×m个小块。
步骤3对步骤2中得到的小块都进行DCT变换。
步骤4对通过DCT变换的小块分别提取低频系数和高频系数,并对相应位置的低高频系数根据低高频融合准则进行融合。
步骤5对已融合的DCT系数进行IDCT,最终得到融合图像。
2.1 低频系数融合
对视觉最重要的信息部分,都集中在图像的低频。低频代表图像像素之间慢变化,即图像框架部分[11] 。为了保持图像的可视性,保留图像的低频部分,低频部分的改变有可能引起图像较大的变动。基于DCT变换的融合图像的低频系数采用平均法,假设有p幅多曝光图像,可定义为
式中Gk(i,j)是源图像经DCT变换后提取的低频系数;G(i,j)为融合后的低频系数;wk是权重因子。
2.2 高频系数融合
高频系数对应于图像的细节信息,如边缘等特征。高频系数的融合规则如下。
(1)分块后的图像经DCT变换后,提取它的高频系数。
分别计算高频系数D(i,j)以像素点(i,j)为中心的(2k+1)×(2k+1)邻域内的图像标准差表达式为
(2)记p幅多曝光图像的某高频系数的区域标准差分别为[C1(i,j),C2(i,j),…,Cp(i,j)],则提取的高频系数对应的权重系数为
(3)由式(7)可以得出p幅多曝光图像的权重,对它们进行比较,融合后的高频系数D(i,j)为最大的权重系数所对应的高频系数。如果
那么
⛄二、部分源代码
clc
clear
close all
%Select First Image
disp(‘Please Select First Image:’)
[filename, pathname]= uigetfile({‘.jpg;.png;*.tif’},‘Select First Image’);
path=fullfile(pathname, filename);
im1=imread(path);
disp(‘Great! First Image is selected’)
%Select Second Image
disp(‘Please Select Second Image:’)
[filename, pathname]= uigetfile({‘.jpg;.png;*.tif’},‘Select Second Image’);
path=fullfile(pathname, filename);
im2=imread(path);
disp(‘Great! Second Image is selected’)
if size(im1,3) == 3 % Check if the images are grayscale
im1 = rgb2gray(im1);
end
if size(im2,3) == 3
im2 = rgb2gray(im2);
end
if size(im1) ~= size(im2) % Check if the input images are of the same size
error(‘Size of the source images must be the same!’)
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]刘卫华,马洋花,刘颖.基于DCT变换的多曝光图像融合方法[J].西安邮电大学学报. 2016,21(06)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合