swustoj1132Coin-collecting by robot

本文介绍了一个使用动态规划解决机器人在棋盘上收集硬币的问题。通过定义状态转移方程,求解机器人从左上角到右下角能收集到的最大硬币数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Several coins are placed in cells of an n×m board. A robot, located in the upper left cell of the board, needs to collect as many of the coins as possible and bring them to the bottom right cell. On each step, the robot can move either one cell to the right or one cell down from its current location.
输入
The fist line is n,m, which 1< = n,m <= 1000.
Then, have n row and m col, which has a coin in cell, the cell number is 1, otherwise is 0.
输出
The max number Coin-collecting by robot.
样例输入
5 6
0 0 0 0 1 0 
0 1 0 1 0 0 
0 0 0 1 0 1 
0 0 1 0 0 1 
1 0 0 0 1 0
样例输出
5

思路:动态规划。

dp【i】【j】表示走到(i,j)这个点所能获得的最大coin数。

转移方程为:

mp[i][j] = max(mp[i - 1][j], mp[i][j - 1]);



#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
#include<queue>
#include<iostream>
#include<string.h>
using namespace std;
int mp[1005][1005];
//oj1132
int main()
{
	int n, m;
	while (cin >> n >> m) {
		for (int i = 0;i < n;i++) {
			for (int j = 0;j < m;j++) {
				scanf("%d", &mp[i][j]);
			}
		}
		for (int i = 1;i < n;i++)
		 {
			if (mp[i][0] == 1) {
				mp[i][0] = mp[i - 1][0]+1;
			}
			else {
				mp[i][0] = mp[i - 1][0];
			}
		}
		 for (int i = 1;i < m;i++) {
			 if (mp[0][i] == 1) {
				 mp[0][i] = mp[0][i - 1] + 1;
			 }
			 else {
				 mp[0][i] = mp[0][i - 1];
			 }
		 }
		for (int i = 1;i < n;i++) {
			for (int j = 1;j < m;j++) {
				if(mp[i][j])
				mp[i][j] = max(mp[i - 1][j], mp[i][j - 1])+1;
				else {
					mp[i][j] = max(mp[i - 1][j], mp[i][j - 1]);
				}
			}
		}
		int ans = mp[n - 1][m - 1];
		cout <<  ans <<"\r\n";
	}
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值