神经网络梯度公式推导,深度神经网络梯度消失

bp神经网络中的gradient是什么意思

谷歌人工智能写作项目:神经网络伪原创

bp神经网络中的gradient是什么意思

若果对你有帮助,请点赞写作猫。 神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值。

现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法、牛顿法、列文伯格-马跨特法、狗腿法等等),这些算法会先初始化一个解,在这个解的基础上,确定一个搜索方向和一个移动步长(各种法算确定方向和步长的方法不同,也就使各种算法适用于解决不同的问题),使初始解根据这个方向和步长移动后,能使目标函数的输出(在神经网络中就是预测误差)下降。

然后将它更新为新的解,再继续寻找下一步的移动方向的步长,这样不断的迭代下去,目标函数(神经网络中的预测误差)也不断下降,最终就能找到一个解,使得目标函数(预测误差)比较小。

现在很多算法在寻解过程,都会借助梯度来确定目标函数的下降方向,梯度可以理解为单变量时的导数,梯度下降的方法就是目标函数的下降方向。

你可以到《神经网络之家》nnetinfo中查看《梯度下降法》一文来理解,另外还有《Levenberg-Marquardt法理论基础》方法,也讲解了在数据不太大时,一种更优于梯度下降法的寻解方法若果对你有帮助,请点赞。

祝学习愉快。

BP神经网络的MATLAB训练Gradient是什么意思?Performance是什么意思?,大神能解释一下吗?谢谢了

Gradient是梯度的意思,BP神经网络训练的时候涉及到梯度下降法,表示为梯度下降的程度与训练过程迭代次数(步长)的关系。

Performance是神经网络传递误差大小的意思,表示为均方差与训练过程迭代次数(步长)的关系。

什么是梯度消失?如何加快梯度下降的速度

累乘中一个梯度小于1,那么不断累乘,这个值会越来越小,梯度衰减很大,迅速接近0。在神经网络中是离输出层近的参数,梯度越大,远的参数,梯度越接近0。根本原因是sigmoid函数的缺陷。

方法:1、好的初始化方法,逐层预训练,后向传播微调。2、换激活函数,用relu,leaky——relu。靠的是使梯度靠近1或等于1,避免了在累乘过程中,结果迅速衰减。

避免梯度消失和梯度爆炸的方案:使用新的激活函数Sigmoid 函数 和 双曲正切函数都会导致梯度消失的问题。ReLU 函数当 x < 0,的时候一样会导致无法学习。

利用一些改进的 ReLU 可以在一定程度上避免梯度消失的问题。例如,ELU 和 Leaky ReLU,这些都是 ReLU 的变体。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值