python-机器学习 感知器分类算法

本文深入探讨了感知器分类算法的基本原理与应用,包括神经元的数学表示、激活函数及向量点积的概念。通过Python实现感知器算法,并对鸢尾花数据集进行分类,展示了算法的训练过程和决策边界。
部署运行你感兴趣的模型镜像

感知器分类算法

一、基本概念

1. 神经元的数学表示

X向量组表示神经元电信号,W 向量组是弱化神经元电信号的系数组合。Z为处理后的信号。

2. 激活函数

3. 向量点积

 

二、感知器分类算法

1. 感知器数据分类算法步骤

2. 步调函数阈值

3. 权重更新算法

 

4.  适用于第一种数据样本,可线性分割。

5.

 

6.  感知器分类算法的Python实现

 感知器算法

# coding=utf-8
import numpy as np
class Perceptron(object):
    """
    eta: 学习率
    n_iter: 权重向量的训练次数
    w_: 神经分叉权重向量
    errors_: 记录神经元判断出错的次数
    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter
        pass

    def net_input(self, X):
        """
         np.dot做向量点积
        :param self:
        :param x:
        :return:
        """
        return np.dot(X, self.w_[1:]) + self.w_[0]
        pass

    def predict(self, X):
        return np.where(self.net_input(X) >= 0.0, 1, -1)
        pass

    def fit(self, X, y):
        """
        输入训练数据,培训神经元
        :param x: 输入样本向量
        x: shape[n_samples, n_features]
        :param y:对应样本分类
        ###
        x:[[1,2,3],[4,5,6]]
        n_samples: 2
        n_features: 3
        y: [1, -1]
        ###
        :return:
        """
        self.w_ = np.zeros(1 + X.shape[1])
        self.errors_ = []
        for _ in range(self.n_iter):
            errors = 0
            """
            x:[[1,2,3],[4,5,6]]
            y: [1, -1]
            zip(x, y) = [[1,2,3, 1],[4,5,6, -1]]
            """
            for xi, target in zip(X, y):
                update = self.eta * (target - self.predict(xi))
                """
                xi:是一个向量
                update * xi等价:
                [▽w(1) = x[1]*update, ▽w(2) = x[2]*update, ▽w(3) = x[3]*update, 
                """
                self.w_[1:] += update * xi
                self.w_[0] += update
                errors += int(update != 0.0)
                self.errors_.append(errors)
                pass
            pass
        pass

利用感知器算法对数据进行分类

# coding=utf-8
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from ganzhiqi import *
from matplotlib.colors import ListedColormap
file = "C:/Users/25143/Desktop/python_test/pytdata1.csv"
df = pd.read_csv(file, header=None)
y = df.loc[0:99, 4].values
y = np.where(y == 'Iris-setosa', -1, 1)
X = df.iloc[0:100, [0, 2]].values
# print(X)
plt.scatter(X[:50, 0], X[:50, 1], color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='versicolor')
plt.xlabel('花瓣长度')
plt.ylabel('花茎长度')
plt.legend(loc='upper left')
plt.show()

ppn = Perceptron(eta=0.1, n_iter=10)
ppn.fit(X, y)
plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('错误分类次数')


def plot_decision_regions(X, y, classifer, resolution=0.02):
    marker = ('s', 'x', 'o', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    x1_min, x1_max = X[:, 0].min()-1, X[:, 0].max()
    x2_min, x2_max = X[:, 1].min()-1, X[:, 1].max()
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                           np.arange(x2_min, x2_max, resolution))
    # print(np.arange(x2_min, x2_max, resolution).shape)
    # print(np.arange(x2_min, x2_max, resolution))
    Z = classifer.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    # print(xx1.ravel())
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())
    for idx, c1 in enumerate(np.unique(y)):
         plt.scatter(x=X[y == c1, 0], y=X[y == c1, 1], alpha=0.8, c=cmap(idx),
                    marker=marker[idx], label=c1)


plot_decision_regions(X, y, ppn, resolution=0.02)
plt.xlabel('花茎长度')
plt.ylabel('花瓣长度')
plt.legend(loc='upper left')
plt.show()

 使用的数据示例

 

3.22,3.08,1.65,0.24,Iris-setosa
4.15,3.22,1.83,0.34,Iris-setosa
4.35,3.99,1.9,0.4,Iris-setosa
4.32,3.9,1.01,0.24,Iris-setosa
5.96,3.55,1.3,0.18,Iris-setosa
5.55,3.42,1.64,0.25,Iris-setosa
4.41,3.99,1.87,0.39,Iris-setosa
4.25,3.42,1.02,0.12,Iris-setosa
5.73,3.68,1.44,0.16,Iris-setosa
4.28,3.87,1.41,0.21,Iris-setosa
5.92,3.69,1.65,0.26,Iris-setosa
4.58,3.15,1.39,0.17,Iris-setosa
5.18,3.75,1.42,0.24,Iris-setosa
5.99,3.18,1.08,0.15,Iris-setosa
5.95,3.09,1.09,0.24,Iris-setosa
4.58,3.86,1.14,0.29,Iris-setosa
5.32,3.69,1.72,0.22,Iris-setosa
5.07,3.75,1.86,0.48,Iris-setosa
5.58,3.82,1.86,0.31,Iris-setosa
5.44,3.51,1.49,0.32,Iris-setosa
5.67,3.65,1.58,0.18,Iris-setosa
4.81,3.02,1.09,0.28,Iris-setosa
5.02,3.85,1.6,0.41,Iris-setosa
5.16,3.26,1.62,0.17,Iris-setosa
5.78,3.46,1.98,0.27,Iris-setosa
5.14,3.25,1.59,0.42,Iris-setosa
4.97,3.38,1.23,0.35,Iris-setosa
4.47,3.44,1.71,0.26,Iris-setosa
5.51,3.81,1.92,0.18,Iris-setosa
5.5,3.99,1.72,0.41,Iris-setosa
5.47,3.18,1.89,0.49,Iris-setosa
5.79,3.12,1.34,0.1,Iris-setosa
4.24,3.53,1.1,0.33,Iris-setosa
5.66,3.53,1.79,0.5,Iris-setosa
4.24,3.39,1.23,0.36,Iris-setosa
4.56,3.04,1.17,0.1,Iris-setosa
5.49,4,1.98,0.5,Iris-setosa
4.3,3.21,1.07,0.45,Iris-setosa
4.62,3.85,1.75,0.43,Iris-setosa
5.07,3.04,1.22,0.12,Iris-setosa
4.12,3.22,1.24,0.15,Iris-setosa
4.17,3.76,1.86,0.34,Iris-setosa
5.76,3.06,1.94,0.4,Iris-setosa
4.2,3.2,1.63,0.47,Iris-setosa
5.82,3.25,1.49,0.29,Iris-setosa
5.65,3.88,1.35,0.46,Iris-setosa
4.57,3.9,1.68,0.45,Iris-setosa
5.62,3.55,1.41,0.44,Iris-setosa
5.88,3.71,1.73,0.25,Iris-setosa
4.12,3.54,1.78,0.1,Iris-setosa
5.28,3.28,1.79,0.24,Iris-setosa
5.3,3.17,1.95,0.29,Iris-setosa
5.75,3.85,1.75,0.46,Iris-setosa
4.76,3.62,1.54,0.21,Iris-setosa
4.03,3.9,1.36,0.46,Iris-setosa
5.61,3.19,1.32,0.27,Iris-setosa
5.19,3.04,1.19,0.17,Iris-setosa
4.02,3.4,1.9,0.17,Iris-setosa
4.46,3.21,1.28,0.3,Iris-setosa
4.78,3.7,1.98,0.42,Iris-setosa
5.37,3.12,1.45,0.4,Iris-setosa
4.23,3.13,1.54,0.22,Iris-setosa
5.69,3.26,1.9,0.48,Iris-setosa
5.9,3.77,1.67,0.36,Iris-setosa
4.06,3.36,1.31,0.12,Iris-setosa
5.18,3.87,1.55,0.45,Iris-setosa
4.52,3.77,1.6,0.45,Iris
4.46,3.49,1.54,0.18,Iris
4.46,3.38,1.86,0.19,Iris
4.4,3.38,1.28,0.3,Iris
4.92,3.64,1.46,0.14,Iris
5.75,3.44,1.69,0.23,Iris
5.02,3.2,1.66,0.47,Iris
4.1,3.45,1.07,0.29,Iris
5.24,3.85,1.8,0.36,Iris
4.52,3.01,1.04,0.48,Iris
4.24,3.29,1.15,0.41,Iris
5.26,3.01,1.34,0.15,Iris
4.67,3.09,1.51,0.22,Iris
5.67,3.23,1.96,0.12,Iris
5.75,3.31,1.33,0.3,Iris
4.7,3.13,1.74,0.24,Iris
4.4,3.84,1.66,0.24,Iris
4.27,3.58,1.87,0.1,Iris
5.6,3.41,1.31,0.15,Iris
4.61,3.91,1.13,0.43,Iris
5.06,3.53,1.05,0.19,Iris
5.62,3.92,1.77,0.15,Iris
4.24,3.18,1.22,0.2,Iris
4.95,3.5,1.46,0.21,Iris
5.89,3.54,1.62,0.12,Iris
5.89,3.15,1.7,0.2,Iris
4.69,3.9,1.56,0.3,Iris
4.32,3.06,1.54,0.28,Iris
4.07,3.03,1.33,0.21,Iris
4.49,3.59,1.52,0.2,Iris
4.92,3.8,1.56,0.42,Iris
5.95,3.39,1.21,0.48,Iris
4.42,3.85,1.8,0.25,Iris
4.57,3.59,1.66,0.25,Iris

 

 

您可能感兴趣的与本文相关的镜像

Python3.9

Python3.9

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值