python获取二维矩阵的每一行的第一个非零元素

本文介绍了如何使用Python编写函数,通过argmax找到一维和二维数组中第一个非零值的索引。通过get_first_non_zero_1D和get_first_non_zeros_2D函数,展示了查找过程并给出了实际运行结果。

直接上代码:

"""
核心函数:
array_1D!=0 :返回一个True/False序列
array.argmax(axis=0):返回沿axis轴的最大元素的索引,当存在多个相等的最大值时,返回第一个最大值的索引
"""
import numpy as np

array_1D = np.array([0,1,0,-1,0])
array_2D = np.array(
    [[0, 1, 0, -1, 0],
     [0, 0, -1, 0, 1],
     [0, 1, -1, 0, 1],
     [4, 0, -1, 0, 1],
     [7, 16, -1, 0, 1]])


def get_first_non_zero_1D(array_1D):
    first_non_zero = array_1D[(array_1D!=0).argmax(axis=0)]
    return first_non_zero

"""
备注:以下三个函数完全等价,个人比较喜欢最后一个 get_first_non_zeros_2D_2,因为看着比较舒服,也可以方便地扩展到更多维度。
"""

def get_first_non_zeros_2D(array_2D):
    first_non_zeros = np.array([get_first_non_zero_1D(array_2D[i]) for i in range(array_2D.shape[0])])
    return first_non_zeros

def get_first_non_zeros_2D_1(array_2D):
    first_non_zeros = []
    for i in range(array_2D.shape[0]):
        arr = array_2D[i,:]
        first_non_zero = arr[(arr!=0).argmax(axis=0)]
        first_non_zeros.append(first_non_zero)
    return np.array(first_non_zeros)

de
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值