正常来说,运行下面两句会打印tensorflow能用的CPU和GPU,以及相关的设备参数
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
以下罗列几个常用的查看service配置的函数:
使用tensorflow查询机器上是否存在可用的gpu设备
def is_gpu_available(cuda_only=True):
"""
code from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/platform/test.py
Returns whether TensorFlow can access a GPU.
Args:
cuda_only: limit the search to CUDA gpus.
Returns:True/False
True if a gpu device of the requested kind is available.
"""
from tensorflow.python.client import device_lib as _device_lib
if cuda_only:
return any((x.device_type == 'GPU')
for x in _device_lib.list_local_devices())
else:
return any((x.device_type == 'GPU' or x.device_type == 'SYCL')
for x in _device_lib.list_local_devices())
使用tensorflow获取可用的gpu设备编号
def get_available_gpus():
"""
code from http://stackoverflow.com/questions/38559755/how-to-get-current-available-gpus-in-tensorflow
"""
from tensorflow.python.client import device_lib as _device_lib
local_device_protos = _device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']
返回格式为:['/device:GPU:0', '/device:GPU:1']
---------------------------------------------------------------------------------------------------------------------------------------
参考博客:https://blog.youkuaiyun.com/littlehaes/article/details/82317220
https://blog.youkuaiyun.com/weixin_35653315/article/details/71403386
本文介绍了如何使用TensorFlow查询机器上是否配置了可用的GPU设备,并提供了获取GPU设备编号的方法。通过定义函数is_gpu_available和get_available_gpus,可以分别判断GPU是否可用及获取所有可用GPU的详细信息。
2万+

被折叠的 条评论
为什么被折叠?



