LightOJ1422-Halloween Costumes(区间DP)

本文介绍了一道有趣的区间动态规划题目,主人公Gappu为了参加不同主题的万圣节派对,需要根据不同场合更换服装。文章详细解析了如何通过动态规划的方法来计算Gappu在参加所有派对过程中所需的最少服装数量。

Gappu has a very busy weekend ahead of him. Because, next weekend is Halloween, and he is planning to attend as many parties as he can. Since it's Halloween, these parties are all costume parties, Gappu always selects his costumes in such a way that it blends with his friends, that is, when he is attending the party, arranged by his comic-book-fan friends, he will go with the costume of Superman, but when the party is arranged contest-buddies, he would go with the costume of 'Chinese Postman'.

Since he is going to attend a number of parties on the Halloween night, and wear costumes accordingly, he will be changing his costumes a number of times. So, to make things a little easier, he may put on costumes one over another (that is he may wear the uniform for the postman, over the superman costume). Before each party he can take off some of the costumes, or wear a new one. That is, if he is wearing the Postman uniform over the Superman costume, and wants to go to a party in Superman costume, he can take off the Postman uniform, or he can wear a new Superman uniform. But, keep in mind that, Gappu doesn't like to wear dresses without cleaning them first, so, after taking off the Postman uniform, he cannot use that again in the Halloween night, if he needs the Postman costume again, he will have to use a new one. He can take off any number of costumes, and if he takes off k of the costumes, that will be the last k ones (e.g. if he wears costume A before costume B, to take off A, first he has to remove B).

Given the parties and the costumes, find the minimum number of costumes Gappu will need in the Halloween night.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer N (1 ≤ N ≤ 100) denoting the number of parties. Next line contains N integers, where the ith integer ci (1 ≤ ci ≤ 100) denotes the costume he will be wearing in party i. He will attend party 1 first, then party 2, and so on.

Output

For each case, print the case number and the minimum number of required costumes.

Sample Input

2

4

1 2 1 2

7

1 2 1 1 3 2 1

Sample Output

Case 1: 3

Case 2: 4

一道区间DP的题目,我还是太水了,想了好久毫无思绪,最后看了题解…

题意:告诉有n场晚会中需要穿的衣服,衣服是可以套在其他衣服外面的,告诉了序列顺序之后求出最少需要穿多少次衣服。

题解:dp[i][j]表示第i个地方到第j个地方最少需要准备几件衣服,初始化dp[i][j](i <= j)为1,因为至少要1件,对于第i个地方,我们先假设其状态与后面无关即需要穿它,则dp[i][j] = dp[i+1][j] + 1,然后再从i+1向后枚举k,若c[i] == c[k],则表示之后有一个地方要穿的与第i个地方相同,则我们可以不脱它,因为第i天和第k天穿的相同,将区间分成两段,表示为dp[i][j] = dp[i+1][k - 1] + dp[k][j];

ac code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <iterator>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
#include <cctype>
using namespace std;

#define si1(a) scanf("%d",&a)
#define si2(a,b) scanf("%d%d",&a,&b)
#define sd1(a) scanf("%lf",&a)
#define sd2(a,b) scanf("%lf%lf",&a,&b)
#define ss1(s)  scanf("%s",s)
#define pi1(a)    printf("%d\n",a)
#define pi2(a,b)  printf("%d %d\n",a,b)
#define mset(a,b)   memset(a,b,sizeof(a))
#define forb(i,a,b)   for(int i=a;i<b;i++)
#define ford(i,a,b)   for(int i=a;i<=b;i++)

typedef long long LL;
const int N=1100001;
const int M=6666666;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0);
const double eps=1e-7;

int dp[102][102];
int ans[102];

int main()
{
    int T;
    si1(T);
    int cas=1;
    while(T--)
    {
        int n;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            si1(ans[i]);
        }
        mset(dp,0);
        for(int i=0;i<n;i++)
        {
            for(int j=i;j<n;j++)
                dp[i][j]=1;
        }
        for(int i=n-2;i>=0;i--)
        {
            for(int j=i;j<n;j++)
            {
                dp[i][j]=dp[i+1][j]+1;//第i天准备衣服。
                for(int k=i+1;k<=j;k++)
                {
                    if(ans[i]==ans[k])
                        dp[i][j]=min(dp[i][j],dp[i+1][k-1]+dp[k][j]);
                }
            }
        }
        printf("Case %d: %d\n",cas++,dp[0][n-1]);
    }
    return 0;
}



乐播投屏是一款简单好用、功能强大的专业投屏软件,支持手机投屏电视、手机投电脑、电脑投电视等多种投屏方式。 多端兼容与跨网投屏:支持手机、平板、电脑等多种设备之间的自由组合投屏,且无需连接 WiFi,通过跨屏技术打破网络限制,扫一扫即可投屏。 广泛的应用支持:支持 10000+APP 投屏,包括综合视频、网盘与浏览器、美韩剧、斗鱼、虎牙等直播平台,还能将央视、湖南卫视等各大卫视的直播内容一键投屏。 高清流畅投屏体验:腾讯独家智能音画调校技术,支持 4K 高清画质、240Hz 超高帧率,低延迟不卡顿,能为用户提供更高清、流畅的视觉享受。 会议办公功能强大:拥有全球唯一的 “超级投屏空间”,扫码即投,无需安装。支持多人共享投屏、远程协作批注,PPT、Excel、视频等文件都能流畅展示,还具备企业级安全加密,保障会议资料不泄露。 多人互动功能:支持多人投屏,邀请好友加入投屏互动,远程也可加入。同时具备一屏多显、语音互动功能,支持多人连麦,实时语音交流。 文件支持全面:支持 PPT、PDF、Word、Excel 等办公文件,以及视频、图片等多种类型文件的投屏,还支持网盘直投,无需下载和转格式。 特色功能丰富:投屏时可同步录制投屏画面,部分版本还支持通过触控屏或电视端外接鼠标反控电脑,以及在投屏过程中用画笔实时标注等功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值