FOJ-1005 Fast Food

本文介绍了一种解决快餐连锁店仓库选址问题的方法,通过动态规划算法寻找最优位置以最小化各餐厅到仓库的平均距离。文章详细阐述了算法实现过程,并提供了一个具体的案例。

http://acm.fzu.edu.cn/problem.php?pid=1005
Time Limit: 1000 mSec Memory Limit : 32768 KB

Problem Description

The fastfood chain McBurger owns several restaurants along a highway. Recently, they have decided to build several depots along the highway, each one located at a restaurant and supplying several of the restaurants with the needed ingredients. Naturally, these depots should be placed so that the average distance between a restaurant and its assigned depot is minimized. You are to write a program that computes the optimal positions and assignments of the depots.

The k depots will be built at the locations of k different restaurants. Each restaurant will be assigned to the closest depot, from which it will then receive its supplies. To minimize shipping costs, the total distance sum, defined as

must be as small as possible.

Write a program that computes the positions of the k depots, such that the total distance sum is minimized.

Input

The input file contains several descriptions of fastfood chains. Each description starts with a line containing the two integers n and k. n and k will satisfy 1 <= n <= 200, 1 <= k <= 30, k <= n. Following this will n lines containing one integer each, giving the positions di of the restaurants, ordered increasingly.

The input file will end with a case starting with n = k = 0. This case should not be processed.

Output

For each chain, first output the number of the chain. Then output a line containing the total distance sum.
Output a blank line after each test case.

Sample Input

6 3
5
6
12
19
20
27
0 0

Sample Output

Chain 1
Total distance sum = 8

思路

dp[i][j]: 前i个快餐店中有j个作为仓库选址时,各快餐店与其最近的仓库的距离之和的最小值。
dis[i][j]: 快餐店i到j之间只有一个仓库时,i到j之间的所有快餐店与该仓库的距离之和的最小值。
(取(i + j)/ 2作为仓库时得到最小值)

dp[i][j] =
min
{
dp[i][j],
dp[i-1][j-1]+dis[i][i],
dp[i-2][j-1]+dis[i-1][i],
… ,
dp[j-1][j-1]+dis[j][i]
}

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int cnt, n, k, d[205], dp[205][35], dis[205][205];
int main()
{
    while (scanf("%d%d", &n, &k), n, k)
    {
        memset(dp, 0x3f, sizeof dp);
        memset(dis, 0, sizeof dis);
        for (int i = 1; i <= n; i++)
            scanf("%d", &d[i]);
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                for (int k = i; k <= j; k++)
                    dis[i][j] += abs(d[k] - d[(i + j) / 2]), dp[i][1] = dis[1][i];
        for (int j = 2; j <= k; j++)
            for (int i = j; i <= n; i++)
                if (i == j)
                    dp[i][j] = 0;
                else for (int k = j - 1; k <= i; k++)
                    dp[i][j] = min(dp[i][j], dp[k][j - 1] + dis[k + 1][i]);
        printf("Chain %d\nTotal distance sum = %d\n\n", ++cnt, dp[n][k]);
    }
}
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值