swustoj---258将军的书

部署运行你感兴趣的模型镜像

这水题是灰常水的。。只要把页数之和给出的页码之和相减就知道缺的那个数。


#include <stdio.h>
int hehe[24];
void init()//我在这先求出了2的各个次方的值,我有同学没预处理超时了。。
{
  int sum = 1;
  for(int f = 21;f >= 0; f--)
  {
    hehe[f] = sum;
    sum*=2;
  }
}
int main()
{
  init();
  int n,f;
  char c[30];
  while(scanf("%d",&n)!=EOF)
  {
    int sum = 0;
    //printf("%d\n",hehe[21-n]);
    for(f = 0;f < hehe[21-n]-1; f++)
    {
       scanf("%s",&c);
       for(int i = 1;i < 22; i++)
       {
         sum += ((c[i-1]-'0')*hehe[i]);//2进制转化为10进制
       }
    }
    printf("%d\n",((hehe[21-n]-1)*hehe[21-n])/2-sum);
  }
  return 0;
}

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

【无人机】基于改进粒子群算法的无人机路径规划研究[和遗传算法、粒子群算法进行比较](Matlab代码实现)内容概要:本文围绕基于改进粒子群算法的无人机路径规划展开研究,重点探讨了在复杂环境中利用改进粒子群算法(PSO)实现无人机三维路径规划的方法,并将其与遗传算法(GA)、标准粒子群算法等传统优化算法进行对比分析。研究内容涵盖路径规划的多目标优化、避障策略、航路点约束以及算法收敛性和寻优能力的评估,所有实验均通过Matlab代码实现,提供了完整的仿真验证流程。文章还提到了多种智能优化算法在无人机路径规划中的应用比较,突出了改进PSO在收敛速度和全局寻优方面的优势。; 适合人群:具备一定Matlab编程基础和优化算法知识的研究生、科研人员及从事无人机路径规划、智能优化算法研究的相关技术人员。; 使用场景及目标:①用于无人机在复杂地形或动态环境下的三维路径规划仿真研究;②比较不同智能优化算法(如PSO、GA、蚁群算法、RRT等)在路径规划中的性能差异;③为多目标优化问题提供算法选型和改进思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注算法的参数设置、适应度函数设计及路径约束处理方式,同时可参考文中提到的多种算法对比思路,拓展到其他智能优化算法的研究与改进中。
### 问题描述 SWUST OJ平台上的Piggy-Bank问题通常涉及动态规划中的完全背包问题。题目大意是:给定一个存钱罐的空重量 $ e $ 和满重量 $ f $,以及若干种硬币的价值和重量,每种硬币的数量不限。要求用这些硬币恰好填满存钱罐(总重量为 $ f - e $),使得总价值最小。如果无法恰好填满,则输出“This is impossible.”。 ### 解法分析 此问题是一个典型的**完全背包问题**,其中每个物品可以被无限次使用。为了求解最小价值,可以采用动态规划的方法。 #### 动态规划思路 1. **状态定义**: - 定义数组 `ans[j]` 表示当总重量为 $ j $ 时,所需的最小价值。 - 初始化时,`ans[0] = 0`,其余位置初始化为一个较大的值(如 `inf`),表示无法达到该重量。 2. **状态转移**: - 对于每个硬币,重量为 `weight[i]`,价值为 `value[i]`。 - 遍历重量范围 $ j $ 从 `weight[i]` 到最大重量 $ f-e $,更新 `ans[j]` 的值: $$ ans[j] = \min(ans[j], ans[j - weight[i]] + value[i]) $$ 3. **最终结果**: - 如果 `ans[f-e]` 仍为 `inf`,说明无法恰好填满存钱罐;否则输出最小价值。 #### 示例代码 以下是该问题的完整解法代码实现: ```cpp #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; #define inf 0x7fffff int value[508], weight[508], ans[10050]; int main() { int n; scanf("%d", &n); while (n--) { int e, f, t; scanf("%d%d%d", &e, &f, &t); for (int i = 0; i <= f; i++) { ans[i] = inf; } for (int i = 0; i < t; i++) { scanf("%d%d", &value[i], &weight[i]); } ans[0] = 0; for (int i = 0; i < t; i++) { for (int j = weight[i]; j <= f - e; j++) { ans[j] = min(ans[j], ans[j - weight[i]] + value[i]); } } if (ans[f - e] == inf) { printf("This is impossible.\n"); } else { printf("The minimum amount of money in the piggy-bank is %d.\n", ans[f - e]); } } } ``` #### 代码解析 - **初始化**:`ans` 数组初始化为一个极大值 `inf`,表示无法达到的状态。 - **输入处理**:循环读取多组测试数据,每组数据包括空重量 $ e $、满重量 $ f $ 和硬币种类数 $ t $。 - **动态规划处理**:通过两层循环遍历硬币和重量,更新动态规划数组。 - **结果判断**:根据 `ans[f-e]` 是否为 `inf` 判断是否可以填满存钱罐。 ### 算法复杂度 - **时间复杂度**:$ O(T \cdot W) $,其中 $ T $ 是硬币种类数,$ W $ 是目标重量 $ f-e $。 - **空间复杂度**:$ O(W) $,仅使用一维数组存储状态。 ### 相关问题 1. 如何将完全背包问题转换为动态规划解法? 2. 在动态规划中如何处理最小值问题? 3. 如何优化完全背包问题的空间复杂度? 4. 什么是完全背包问题与0-1背包问题的区别? 5. 如何处理无法达到目标状态的情况?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值