POJ 1410 Intersection(判断线段和矩形是否相交)

该博客主要分析了如何解决POJ 1410问题,即判断线段是否与矩形相交。内容包括线段与矩形相交的两种情况分析:线段与矩形边相交或线段完全在矩形内。还强调了需要对矩形的顶点进行排序,以确保正确判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Intersection

Description

You are to write a program that has to decide whether a given line segment intersects a given rectangle.

An example:
line: start point: (4,9)
end point: (11,2)
rectangle: left-top: (1,5)
right-bottom: (7,1)


Figure 1: Line segment does not intersect rectangle

The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.

Input

The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format:
xstart ystart xend yend xleft ytop xright ybottom

where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.

Sample Input

1
4 9 11 2 1 5 7 1

Sample Output

F

【思路分析】

   判断线段和矩形是否相交。分为两种情况:第一种情况就是线段和矩形其中某一边相交时,便满足条件,即转化为判断线段与线段是否相交的问题;第二种情况就是线段在矩形之内,即线段的两个端点在矩形之内(可以不判断线段的端点是否在矩形的边上,因为第一种情况已经考虑过)。如果不满足上述两种情况,则线段在矩形外,即不和矩形相交。还有一个注意点就是要对矩形的四个点排个序,因为“The terms top left and bottom right do not imply any ordering of coordinates”。


代码如下:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define eps 1e-8

struct Point
{
    double x,y;
    Point()
    {

    }
    Point(double x1,double y1)
    {
        x = x1;
        y = y1;
    }
    Point operator - (const Point &b) const
    {
        return Point(x - b.x,y - b.y);
    }
    double operator ^ (const Point &b) const
    {
        return x * b.y - y * b.x;
    }
};
struct Line
{
    Point s,e;
    Line()
    {

    }
    Line(Point s1,Point e1)
    {
        s = s1;
        e = e1;
    }

};

int sgn(double x)
{
    if(fabs(x) < eps)//等于0
        return 0;
    if(x < 0)//小于0
        return -1;
    return 1;//大于0
}
bool intersection(Line l1,Line l2)//判断两线段是否相交
{
    return
    max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
    max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
    max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
    max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
    sgn((l2.s - l1.e) ^ (l1.s - l1.e)) * sgn((l2.e - l1.e) ^ (l1.s - l1.e)) <= 0 &&
    sgn((l1.s - l2.e) ^ (l2.s - l2.e)) * sgn((l1.e - l2.e) ^ (l2.s - l2.e)) <= 0;
}
bool onSeg(Point p,Line l)//判断点是否在直线上
{
    return
    sgn((l.s - p) ^ (l.e - p)) == 0 &&
    sgn((l.s.x - p.x) * (l.e.x - p.x)) <= 0 &&
    sgn((l.s.y - p.y) * (l.e.y - p.y)) <= 0;
}
int inConvexPoly(Point a,Point p[],int n)//判断点和凸多边形的位置关系(凸多边形的点逆时针排序)
{
    for(int i = 0;i < n;i++)
    {
        if(sgn((p[i] - a) ^ (p[(i + 1) % n] - a)) < 0)//点在凸多边形外,若点为顺时针排序改为大于号
            return -1;
        /*
        if(onSeg(a,Line(p[i],p[(i + 1) % n])))//点在凸多边形的边上
            return 0;
        */
    }
    return 1;//点在凸多边形内
}
int main()
{
    int t;
    double x1,x2,y1,y2;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
        Line line(Point(x1,y1),Point(x2,y2));
        scanf("%lf %lf %lf %lf",&x1,&y1,&x2,&y2);
        Point point[4];
        if(x1 > x2)
        {
            double temp = x1;
            x1 = x2;
            x2 = temp;
        }
        if(y1 > y2)
        {
            double temp = y1;
            y1 = y2;
            y2 = temp;
        }
        point[0] = Point(x1,y1);
        point[1] = Point(x2,y1);
        point[2] = Point(x2,y2);
        point[3] = Point(x1,y2);//逆时针排序

        int n = 4;
        bool flag = false;
        for(int i = 0;i < n;i++)//判断线段是否和矩形的四条边相交
        {
            if(intersection(line,Line(point[i],point[(i + 1) % n])))
            {
                flag = true;
                break;
            }
        }
        if(flag)
        {
            printf("T\n");
            continue;
        }
        if(inConvexPoly(line.s,point,n) > 0 && inConvexPoly(line.e,point,n) > 0)//判断线段是否在矩形内
        {
            printf("T\n");
            continue;
        }
        printf("F\n");
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值