分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
215. Kth Largest Element in an Array
找到无序数组中第K大的数
思路一:快排
思路二:堆
这里采用的可以是内建数据结构:priority_queue或者是自己写一个堆排序https://leetcode.com/problems/kth-largest-element-in-an-array/?tab=Solutions
priority_queue int q; 默认大根堆
priority_queue int, vector int,greater int minHeap;小根堆
模板声明带有三个参数,priority_queue(Type, Container, Functional)。Type 为数据类型, Container 为保存数据的容器,Functional 为元素比较方式。Container 必须是用数组实现的容器,比如 vector, deque 但不能用 list。STL里面默认用的是 vector. 比较方式默认用 operator< , 所以如果你把后面俩个参数缺省的话,优先队列就是大顶堆,队头元素最大。
class Solution {
public:
int partion(vector<int>& nums, int low, int high) {
int flag = nums[high];
int i = low - 1;
for (int j = low; j < high; ++j){
if (nums[j] <= flag) {
++i;
swap(nums[i], nums[j]);
}
}
//注意这里交换的是nums[high]不是flag
swap(nums[i+1], nums[high]);
return i+1;
}
int quickSortK(vector<int>& nums, int k, int low, int high) {
if(low >= high) return nums[low];
int midPos = partion(nums, low, high);
if ((nums.size() - midPos) == k) return nums[midPos];
else if ((nums.size() - midPos) > k) return quickSortK(nums, k, midPos + 1, high);
else return quickSortK(nums, k, low, midPos - 1);
}
int findKthLargest(vector<int>& nums, int k) {
/* //利用priority,也可以自己写一个堆排序
priority_queue<int, vector<int>,greater<int> > minHeap;
for (int i = 0; i < k; ++i) minHeap.push(nums[i]);
for (int i = k; i < nums.size(); ++i) {
if (nums[i] > minHeap.top()) {
minHeap.pop();
minHeap.push(nums[i]);
}
}
return minHeap.top();*/
return quickSortK(nums, k, 0, nums.size()-1);
}
};
241. Different Ways to Add Parentheses
Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +, - and *.
Input: “2-1-1”. Output: [0,2]
思路:循环或者动态规划(这里循环的过程有很多重复的地方,所以可以记录下来避免重复计算)动态规划解法:
class Solution {
public:
unordered_map<string, vector<int>> dpMap;
vector<int> diffWaysToCompute(string input) {
vector<int> ret;
for(int i = 0; i < input.size(); i ++)
{
if (input[i] == '+' || input[i] == '-' || input[i] == '*')
{
vector<int> left, right;
string leftStr = input.substr(0, i);
if (dpMap.find(leftStr) != dpMap.end()) left = dpMap[leftStr];
else left = diffWaysToCompute(leftStr);
string rightStr = input.substr(i+1);
if (dpMap.find(rightStr) != dpMap.end()) right = dpMap[rightStr];
else right = diffWaysToCompute(rightStr);
for(int j = 0; j < left.size(); j ++)
{
for(int k = 0; k < right.size(); k ++)
{
if(input[i] == '+')
ret.push_back(left[j] + right[k]);
else if(input[i] == '-')
ret.push_back(left[j] - right[k]);
else
ret.push_back(left[j] * right[k]);
}
}
}
}
//only number without
if (ret.empty()) ret.push_back(atoi(input.c_str()));
dpMap[input] = ret;
return ret;
}
};
240. Search a 2D Matrix II
在一个二维数组中查找某个值
思路一:二分查找,每次去掉左上角或者右下角
class Solution {
public:
bool help(vector<vector<int>>& matrix, int target, int llow, int lhigh, int rlow, int rhigh) {
if (llow > lhigh || rlow > rhigh) return false;
if(rlow == rhigh && llow == lhigh) return matrix[llow][rlow] == target;
int lmid = (llow + lhigh) / 2;
int rmid = (rlow + rhigh) / 2;
if (matrix[lmid][rmid] == target)
return true;
else if (matrix[lmid][rmid] > target)
return help(matrix, target, llow, lmid - 1, rlow, rhigh)||help(matrix, target, llow, lhigh, rlow, rmid-1);
else
return help(matrix, target, lmid+1, lhigh, rlow, rhigh)||help(matrix, target, llow, lhigh, rmid+1, rhigh);
}
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if (matrix.empty()) return false;
int lineNum = matrix.size();
int colNum = matrix[0].size();
return help(matrix, target, 0, lineNum-1, 0, colNum-1);
}
};
更高效的写法:从右上角入手,每次去掉一行或者一列
一个是注意i和j代表什么,别弄反了;另外一个是注意边界条件,是否等于0。
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
if (matrix.empty()) return false;
int lineNum = matrix.size();
int colNum = matrix[0].size();
int i = 0;
int j = colNum - 1;
while (i < lineNum && j >= 0)
{
if (matrix[i][j] == target) return true;
else if (matrix[i][j] > target) --j;
else ++i;
}
return false;
}
};