【力扣Hot 100】普通数组1

1. 最大子数组和

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组

是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • 104 <= nums[i] <= 104

题解:

动态规划:

用g[i]表示:以 i 结尾的连续最长子序列的和

那么 g[i] = max(g[i - 1] + nums[i], nums[i])

意思是:以 i 结尾的连续最长子序列的和,等于,以i - 1结尾的连续最长子序列的和 加上 第i个数,和,第i个数,之间的最大值。

注意,因为数组nums是从0开始的,所以用 g[i] 表示:以 i - 1结尾的连续最长子序列的和

同时nums[i]表示第i个数

关系式变成: g[i + 1] = max(g[i] + nums[i], nums[i])

意思是:以 i 结尾的连续最长子序列的和,等于,以i - 1结尾的连续最长子序列的和 加上 第i个数,和,第i个数,之间的最大值。

const int N = 1e5 + 10;
int g[N];

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int n = nums.size();
        int ans = nums[0];
        for(int i = 0; i < n; i ++ ) {
            g[i + 1] = max(g[i] + nums[i], nums[i]);
            ans = max(ans, g[i + 1]);
        }
        return ans;
    }
};

发现,g[i + 1]只受到前面一个数 g[i] 的影响,因此数组g可以省去:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int ans = nums[0], pre = 0;
        int n = nums.size();
        for(int i = 0; i < n; i ++ ) {
            pre = max(pre + nums[i], nums[i]);
            ans = max(ans, pre);
        }
        return ans;
    }
};

2. 合并区间

以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。

示例 1:

输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].

示例 2:

输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。

提示:

  • 1 <= intervals.length <= 104
  • intervals[i].length == 2
  • 0 <= starti <= endi <= 104

题解

做题的时候可以画图整理一下思路。

先按区间左端点排序。

用 bg, ed 记录当前的区间的左右端点。

遍历数组中的每个区间,分别判断以下三种情况:

  1. bg———ed

                                v0———v1
    

v0 > ed,那么把 {bg, ed} 存入 ans,并更新 bg = v0, ed = v1

  1. bg———ed

             v0————v1
    

v0 < ed,并且v1 > ed,那么更新ed为v1: ed = v1

  1. bg—————ed

         v0——v1
    

v1 < ed,不用管

因为区间是按左端点排序的,所以 v0 一定大于bg,不用管

初始化 bg, ed 时,把它们设为特别小的值,在将 {bg, ed} 存入 ans 时要判断是不是最初的bg, ed

代码:

class Solution {
public:
    vector<vector<int>> merge(vector<vector<int>>& intervals) {
        vector<vector<int>> ans;
        sort(intervals.begin(), intervals.end());
        int bg = -1e5, ed = -1e5;
        for(int i = 0; i < intervals.size(); i ++ ) {
            auto &v = intervals[i];
            if(v[0] > ed) {
		            // 第一种情况
                if(i) ans.push_back({bg, ed});
                bg = v[0];
                ed = v[1];
            } else {
                if(v[1] > ed) {
		                // 第二种情况
                    ed = v[1];
                }
            }
        }
        ans.push_back({bg, ed});
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值