论文:Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates
1. 使用材料及结构
Si带,胶层(环氧树脂)、PET基板

2. 弯曲测试:
测量原长L、横跨距离L-dL,外部力F

3. 参数表达式:
弯曲形状的描述:

其中,

其中,dL/L为施加的应变,h为基底的厚度,w为z方向的基底偏角,w0是中心处的w
弯曲半径:

相应的应变为

4.三种失效形式:
断裂、滑移、分离

5.机理模型
(1)基于梁理论
轴向压缩应力为

其中,Es是基底杨氏模量,vs是基底泊松比

弯曲力矩

最大剪应力

其中Ga是粘附层剪切模量,

最大剥离应力(薄膜/粘附界面)

其中,


断裂应力:

界面滑移发生在

界面分裂发生在

(2)基于有限元理论
当柔电薄膜宽度相比长度无法被忽略时,


公式相关MATLAB代码
clc,clear;
% set the parameters of top device film
Ef=130;
vf=0.27;
hf=1;
%set the parameters of substrate
Es=4.2;
vs=0.44;
hs=50;
% set the parameters of adhesive
Ea=0.04;
va=0.44;
ha=1;
theta=108;
% the other parameters
L=78000;
tc=0.02;
A2_u=-0.02;
% set the limit of l
l=0:0.01:0.11;
% the value of E_(i=f,s,a)
E_f=Ef/(1-vf^2);
E_s=Es/(1-vs^2);
E_a=Ea/(1-va^2);
%the value of ki(i=1`7)
Ga=E_a*(1-va)/2;
k1=4*Ga*ha*(1/(E_f*hf)+1/(E_s*hs));
k2=12*E_a*ha^3*(1/(E_f*hf^3)+1/(E_s*hs^3));
lamda1=sqrt(k1+2*sqrt(k2))/2;
lamda2=sqrt(-1*k1+2*sqrt(k2))/2;
beta=6*(1/(E_f*hf^2)-1/(E_s*hs^2))/(ha*12*(1/(E_f*hf^3)+1/(E_s^hs^3))+lamda1^4/(E_a*ha^3));
X=(3*E_a*ha^3*(1/(E_f*hf^3)+1/(E_s*hs^3)))^(1/4);
p=sin(theta/360*pi);
kp=ellipticK(p);
% calculation
f1=exp(X*l).*(sin(X*l)-cos(X*l));
f2=exp(X*l).*(sin(X*l)+cos(X*l));
k4=(1-lamda1^2/(2*X^2)-2*X/lamda1)*beta;
k5=(1/(E_f*hf)+1/(E_s*hs)*tc);
k6=1.5*(1/(E_f*hf^2)-1/(E_s*hs^2));
zz=(exp(X*l).*(1-tan(X*l)));
z11=(X^2*L*f1.*zz).*(tan(X*l).*f1+f2);
z12=ones(12)/z11;
z1=4*E_a*ha*p*kp*z12;
k72=ones(12)/(X^2*L*exp(X*l).*cos(X*l));
k71= k6*ha^2*E_a*p*kp/k72;
k7=z1*k6*ha/(2*X) +k71 -k5+ (lamda1^2+lamda2^2)*A2_u/(4*Ga*ha);
k8=lamda1/(2*Ga*ha) + k4*beta*k6*ha* (1-tan(X*l))/(2*X*(tan(X*l).*f1+f2))-k4*beta;
A_u=k7/k8;
Cs1=k4*beta*A_u-4*E_a*ha*p*kp*f1/(X^2*L*exp(X*l).*cos(X*l));
Cs=Cs1/(tan(X*l).*f1+f2);
Bs1=X^2*L*exp(X*l).*cos(X*l);
Bs2=Cs*tan(X*l);
Bss=ones(12)/Bs1;
Bs=4*E_a*ha*p*kp*Bss+Bs2;
dQ1=(l.*f1/(2*X)+(f2-f1-2)/(4*X));
dQ2=(l.*f2/(2*X)-(f2+f1)/(4*X));
dQ=dQ1*Bs+dQ2*Cs*ha^2;
%plot
ls=l*ha;
F=A_u/(4*Ga)-(1/(E_f*hf)+1/(E_s*hs))*tc*ls+hs*p*kp/L-1.5*(1/(E_f*hf^2)-1/(E_s*hs^2))*dQ;
plot(l,F)