Amr loves Geometry. One day he came up with a very interesting problem.
Amr has a circle of radius r and center in point (x, y). He wants the circle center to be in new position (x', y').
In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.
Help Amr to achieve his goal in minimum number of steps.
Input consists of 5 space-separated integers r, x, y, x' y' (1 ≤ r ≤ 105, - 105 ≤ x, y, x', y' ≤ 105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.
Output a single integer — minimum number of steps required to move the center of the circle to the destination point.
2 0 0 0 4
1
1 1 1 4 4
3
4 5 6 5 6
0
In the first sample test the optimal way is to put a pin at point (0, 2) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter).
题意:
给你一个圆,一个初始圆心,一个目标圆心。
每次可以进行的变换为:围绕初始圆边上某一点,进行旋转,问最少经过多少次旋转,可以将圆旋转至目标位置。
分析:
也是贪心。。。计算初始圆心和目标圆心的距离,与圆直径相除,向上取余即为结果
AC:
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
#include <math.h>
using namespace std;
#define N 10010
#define LL __int64
int main(){
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
double r,x,y,x1,y1;
scanf("%lf %lf %lf %lf %lf",&r,&x,&y,&x1,&y1);
double t = sqrt((x1-x)*(x1-x)+(y1-y)*(y1-y))/(2*r);
if(t-(int)t>1e-20) printf("%d\n",(int)t+1);
else printf("%d\n",(int)t);
//写的简单点,可以使用ceil(t)进一法进行取整。
return 0;
}