排列(permutation)

本文介绍了一个通过编程解决特定数学问题的方法:利用1到9这9个数字组成三个比例为1:2:3的三位数,并确保每个数字仅被使用一次。通过遍历可能的组合并检查它们是否满足条件来找出所有可能的解决方案。

用1,2,3,…,9组成3个三位数abc,def和ghi,每个数字恰好使用一次,要 求abc:def:ghi=1:2:3。按照“abc def ghi”的格式输出所有解,每行一个解。提示:不必 太动脑筋。

#include <stdio.h>
void result(int num, int &result_add, int &result_mul)
{
    int i, j, k;
    i = num / 100;        //百位
    j = num / 10 % 10;    //十位
    k = num % 10;         //个位
    result_add += i + j + k;    //分解出来的位数相加
    result_mul *= i * j * k;    //相乘
}

int main()
{
    int i, j, k;
    int result_add, result_mul;
    for(i = 123; i <=329; i++)
    {
        j = i * 2;
        k = i * 3;
        result_add = 0;
        result_mul = 1;
        result(i, result_add, result_mul);
        result(j, result_add, result_mul);
        result(k, result_add, result_mul);
        if(result_add == 45 && result_mul == 362880)
        {
             printf("%d %d %d\n", i, j, k);
        }
    }
    return 0;
}

帮我看一下我的代码对吗 def swap(permutation, i, j): """ Return a new permutation where the elements at indices i and j are swapped. Parameters: permutation (list or np.ndarray): Current assignment. i, j (int): Indices to swap. Returns: (list or np.ndarray): New permutation with i and j exchanged. """ # create a copy or modify in place to swap positions i and j new_permutation=permutation new_permutation[i]=permutation[j] new_permutation[j]=permutation[i] return new_permutation def delta_i_j(permutation, i, j, weights, distance): """ Compute the change in objective value if we swap facilities i and j. Parameters: permutation (list or np.ndarray): Current assignment. i, j (int): Indices of facilities to swap. weights (np.ndarray): Flow matrix. distance (np.ndarray): Distance matrix. Returns: float: Change in cost after swapping i and j. """ # compute the fitness difference directly or with the O(n) delta formula old_cost=fitness(permutation,weights,distance) new_permutation=swap(permutation,i,j) new_cost=fitness(new_permutation,weights,distance) return new_cost-old_cost def best_swap(weights, distance, permutation, current_fitness, best_fitness, tabu_matrix, itr): """ Identify the best neighbor of the current solution while respecting Tabu Search rules. Parameters: weights (np.ndarray) : Flow matrix of the QAP. distance (np.ndarray) : Distance matrix of the QAP. permutation (list or np.ndarray) : Current assignment of facilities to locations. current_fitness (float) : Cost of the current solution. best_fitness (float) : Best cost found so far (global best). tabu_matrix (np.ndarray) : Matrix that stores, for each possible swap, the iteration number until which it is tabu. itr (int) : Current iteration index. Returns: i, j (int): Indices of the selected swap. delta (float): Change in cost for the swap. is_best (bool): True if this move improves the global best solution. """ # iterate over all pairs (i, j) # compute delta for each swap # skip tabu moves unless aspiration criterion is met # keep track of the best candidate n=len(permutation) best_delta=float(&#39;inf&#39;) best_i, best_j = 0, 0 is_best=False for i in range(n): for j in range(i+1,n): if tabu_matrix[i][j]<itr: if current_fitness+delta_i_j(permutation,i,j,weights,distance)<best_fitness: new_permutation=swap(permutation,i,j) delta=delta_i_j(permutation,i,j,weights,distance) return i,j,delta,True else: delta=delta_i_j(permutation,i,j,weights,distance) if delta<best_delta: best_delta=delta best_i, best_j=i,j return best_i,best_j,best_delta,is_best def tabu_search(weights, distance, tabu_tenure, tmax, diversification, u): """ Main Tabu Search routine. Parameters: weights (np.ndarray): Flow between locations. distance (np.ndarray): Distance between locations. tabu_tenure (int): Number of iterations a move remains tabu. tmax (int): Total number of iterations. diversification (bool): Enable diversification strategy. u (int): Number of iterations after which diversification triggers. Returns: best_fitness (float): Best objective value found. best_permutation (list or np.ndarray): Best assignment found. fitness_history (list): Cost of each visited solution. best_history (list): Best cost at each iteration. """ # initialize permutation and tabu matrix # initialize diversification structures if enabled # repeat for tmax iterations: # choose move (best swap or diversification) # apply move and update current fitness # update best solution if improved # update tabu matrix # update diversification bookkeeping if enabled # initialize permutation and tabu matrix n = len(weights) permutation = np.random.permutation(n) # 计算当前适应度 current_fitness = fitness(permutation,weights,distance) # 初始化最佳适应度 best_fitness = current_fitness # 初始化最佳排列 best_permutation = permutation.copy() # 初始化禁忌矩阵 tabu_matrix = np.zeros((n, n), dtype=int) for itr in range(tmax): # 找到最佳交换 i, j, delta, is_best = best_swap(weights, distance, permutation, current_fitness, best_fitness, tabu_matrix, itr) # 更新排列 permutation = swap(permutation, i, j) # 更新当前适应度 current_fitness += delta # 更新禁忌矩阵 tabu_matrix[i][j] = itr + tabu_tenure tabu_matrix[j][i] = itr + tabu_tenure # 更新最佳适应度和最佳排列 if is_best: best_fitness = current_fitness best_permutation = permutation.copy() # 多样化策略 if diversification and itr % u == 0: np.random.shuffle(permutation) current_fitness = fitness(permutation,weights, distance ) return best_permutation, best_fitness, # return final best solution and histories # ------------------------------------------------ # Diversification: # implement a mechanism that forces rarely-used # swaps to be tried after u iterations # ------------------------------------------------
最新发布
10-07
要检查Tabu Search算法Python代码的正确性,可从以下几个方面着手: ### 代码逻辑检查 - **初始化部分**:检查初始解的生成是否合理,禁忌表的初始化是否正确。 - **邻域搜索**:检查`swap`函数是否能正确生成邻域解,`delta_i_j`函数是否能准确计算邻域解与当前解的差异。 - **禁忌准则**:检查是否正确判断一个邻域解是否在禁忌表中,以及何时更新禁忌表。 - **终止条件**:检查算法是否能在满足终止条件时正确停止。 ### 代码示例检查 假设代码中有如下几个关键函数: ```python def swap(solution, i, j): new_solution = solution.copy() new_solution[i], new_solution[j] = new_solution[j], new_solution[i] return new_solution def delta_i_j(solution, i, j, distance_matrix): # 这里需要根据具体问题实现计算差异的逻辑 pass def best_swap(solution, tabu_list, distance_matrix): # 这里需要实现寻找最佳邻域解的逻辑 pass def tabu_search(initial_solution, distance_matrix, tabu_size, max_iterations): current_solution = initial_solution best_solution = initial_solution best_fitness = float(&#39;inf&#39;) tabu_list = [] for _ in range(max_iterations): next_solution = best_swap(current_solution, tabu_list, distance_matrix) # 更新当前解和最佳解 current_solution = next_solution # 更新禁忌表 return best_solution, best_fitness ``` ### 检查方法 - **单元测试**:对每个函数进行单元测试,确保其功能正确。例如,测试`swap`函数是否能正确交换元素: ```python test_solution = [1, 2, 3, 4] new_solution = swap(test_solution, 0, 2) assert new_solution == [3, 2, 1, 4] ``` - **边界条件测试**:测试算法在边界条件下的表现,例如初始解只有一个元素,或者禁忌表大小为0的情况。 - **与已知结果对比**:对于一些简单的问题实例,手动计算最优解,然后与算法的输出进行对比。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值