OpenCV图像匹配算法之brisk

本文介绍了一种基于BRISK算法的图像特征匹配方法,并详细解释了如何使用BRISK算法进行图像匹配的过程。通过实例演示了从加载图像到特征点检测、描述符提取、匹配以及结果展示的整个流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

//brisk.cpp  
    #include "stdafx.h"  
    #include <cv.hpp>  
    #include <highgui.h>  
    #include "utils.h"  
    #include <iostream>  
    using namespace std;  
      
    void brisk(char* path1, char* path2, INFO& info, bool show)  
    {  
        double t1,t2;  
        t1=cvGetTickCount();  
      
        initModule_nonfree();  
      
        Mat img1, img2;  
        img1=imread(path1,0);  
        img2=imread(path2,0);  
        if(img1.data==NULL)  
        {  
            cout<<"The image can not been loaded: "<<path1<<endl;  
            system("pause");  
            exit(-1);  
        }  
        if(img2.data==NULL)  
        {  
            cout<<"The image can not been loaded: "<<path2<<endl;  
            system("pause");  
            exit(-1);  
        }  
      
        BRISK dbrisk(BRISK_HTHRES,BRISK_NOCTAVES);  
        vector<KeyPoint> kpts1_brisk, kpts2_brisk;  
        Mat desc1_brisk, desc2_brisk;  
        Ptr<cv::DescriptorMatcher> matcher_l1 = DescriptorMatcher::create("BruteForce-Hamming");      //二进制汉明距离匹配  
        vector<vector<DMatch> > dmatches_brisk;  
        vector<Point2f> matches_brisk, inliers_brisk;  
          
        dbrisk(img1,noArray(),kpts1_brisk,desc1_brisk,false);  
        dbrisk(img2,noArray(),kpts2_brisk,desc2_brisk,false);  
        info.n1=kpts1_brisk.size();  
        info.n2=kpts2_brisk.size();  
      
        matcher_l1->knnMatch(desc1_brisk,desc2_brisk,dmatches_brisk,2);  
        matches2points_nndr(kpts1_brisk,kpts2_brisk,dmatches_brisk,matches_brisk,DRATIO);  
        info.m=matches_brisk.size()/2;  
        compute_inliers_ransac(matches_brisk,inliers_brisk,MIN_H_ERROR,false);  
        info.rm=inliers_brisk.size()/2;  
      
        t2=cvGetTickCount();  
        info.t=(t2-t1)/1000000.0/cvGetTickFrequency();  
      
        Mat img1_rgb_brisk = imread(path1,1);  
        Mat img2_rgb_brisk = imread(path2,1);  
        Mat img_com_brisk = Mat(Size(img1.cols*2,img1.rows),CV_8UC3);  
      
        if(show == true)  
        {  
            draw_inliers(img1_rgb_brisk,img2_rgb_brisk,img_com_brisk,inliers_brisk,2);  
            imshow("brisk",img_com_brisk);  
            waitKey(0);  
        }  
      
        return;  
    }  

使用
    INFO brisk_info;  
    brisk(path1,path2,brisk_info,false);  
    showInfo(brisk_info); 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值