make_loss.py
这段代码定义了一个函数 make_loss
,它根据配置文件 cfg
和类别数量 num_classes
创建一个损失函数和中心损失(CenterLoss)准则。以下是代码的详细注释:
import torch.nn.functional as F
from .softmax_loss import CrossEntropyLabelSmooth, LabelSmoothingCrossEntropy
from .triplet_loss import TripletLoss
from .center_loss import CenterLoss
# 定义make_loss函数,用于根据配置文件和类别数量创建损失函数
def make_loss(cfg, num_classes):
# 获取采样器类型
sampler = cfg.DATALOADER.SAMPLER
# 特征维度
feat_dim = 2048
# 创建CenterLoss实例
center_criterion = CenterLoss(num_classes=num_classes, feat_dim=feat_dim, use_gpu=True)
# 如果使用triplet损失
if 'triplet' in cfg.MODEL.METRIC_LOSS_TYPE:
if cfg.MODEL.NO_MARGIN:
# 使用不带边界的TripletLoss
triplet = TripletLoss()
print("using soft triplet loss for training")
else:
# 使用带边界的TripletLoss
triplet = TripletLoss(cfg.SOLVER.MARGIN)
print("using triplet loss with margin:{}".format(cfg.SOLVER.MARGIN))
else:
print('expected METRIC_LOSS_TYPE should be triplet but got {}'.format(cfg.MODEL.METRIC_LOSS_TYPE))
# 如果开启了标签平滑
if cfg.MODEL.IF_LABELSMOOTH == 'on':
# 创建CrossEntropyLabelSmooth实例
xent = CrossEntropyLabelSmooth(num_classes=num_classes)
print("label smooth on, numclasses:", num_classes)
# 定义不同采样器的损失函数
if sampler == 'softmax':
def loss_func(score, feat, target):
return F.cross_entropy(score, target)
elif cfg.DATALOADER.SAMPLER == 'softmax_triplet':
def loss_func(score, feat, target, target_cam, i2tscore=None):
if cfg.MODEL.METRIC_LOSS_TYPE == 'triplet':
if cfg.MODEL.IF_LABELSMOOTH == 'on':
if isinstance(score, list):
# 计算ID损失
ID_LOSS = [xent(scor, target) for scor in score[0:]]
ID_LOSS = sum(ID_LOSS)
else:
ID_LOSS = xent(score, target)
if isinstance(feat, list):
# 计算Triplet损失
TRI_LOSS = [triplet(feats, target)[0] for feats in feat[0:]]
TRI_LOSS = sum(TRI_LOSS)
else:
TRI_LOSS = triplet(feat, target)[0]
# 计算总损失
loss = cfg.MODEL.ID_LOSS_WEIGHT * ID_LOSS + cfg.MODEL.TRIPLET_LOSS_WEIGHT * TRI_LOSS
if i2tscore is not None:
# 计算I2T损失
I2TLOSS = xent(i2tscore, target)
loss = cfg.MODEL.I2T_LOSS_WEIGHT * I2TLOSS + loss
return loss
else:
if isinstance(score, list):
ID_LOSS = [F.cross_entropy(scor, target) for scor in score[0:]]
ID_LOSS = sum(ID_LOSS)
else:
ID_LOSS = F.cross_entropy(score, target)
if isinstance(feat, list):
TRI_LOSS = [triplet(feats, target)[0] for feats in feat[0:]]
TRI_LOSS = sum(TRI_LOSS)
else:
TRI_LOSS = triplet(feat, target)[0]
loss = cfg.MODEL.ID_LOSS_WEIGHT * ID_LOSS + cfg.MODEL.TRIPLET_LOSS_WEIGHT * TRI_LOSS
if i2tscore is not None:
I2TLOSS = F.cross_entropy(i2tscore, target)
loss = cfg.MODEL.I2T_LOSS_WEIGHT * I2TLOSS + loss
return loss
else:
print('expected METRIC_LOSS_TYPE should be triplet but got {}'.format(cfg.MODEL.METRIC_LOSS_TYPE))
else:
print('expected sampler should be softmax, triplet, softmax_triplet or softmax_triplet_center but got {}'.format(cfg.DATALOADER.SAMPLER))
return loss_func, center_criterion
主要功能和流程
- 导入依赖:导入必要的函数和类,包括交叉熵损失、三元组损失和中心损失。
- 定义
make_loss
函数:根据配置文件和类别数量创建损失函数。 - 创建 CenterLoss 实例:中心损失用于衡量特征中心与各类样本特征的距离。
- 创建 TripletLoss 实例:根据配置文件选择是否使用带边界的三元组损失。
- 创建 CrossEntropyLabelSmooth 实例:如果开启了标签平滑,则创建标签平滑交叉熵损失实例。
- 定义损失函数:根据不同的采样器类型定义相应的损失函数逻辑,包括交叉熵损失和三元组损失的组合。
- 返回损失函数和中心损失:最终返回定义好的损失函数和中心损失实例。