目录
1.算法概述
高斯—马尔可夫定理(Gauss–Markov theory)是指在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量的这一定理。高斯--马尔可夫定理的意义在于,当经典假定成立时,我们不需要再去寻找其它无偏估计量,没有一个会优于普通最小二乘估计量。也就是说,如果存在一个好的线性无偏估计量,这个估计量的方差最多与普通最小二乘估计量的方差一样小,不会小于普通最小二乘估计量的方差。
在统计学中,高斯-马尔可夫定理是指在误差零均值,同方差,且互不相关的线性回归模型中,回归系数的最佳线性无偏估计就是最小方差估计。一般而言,任何回归系数的线性组合之BLUE(Best Linear Unbiased Estimators)就是它的最小方差估计。在这个线性回归模型中,其误差不需要假定为正态分布或独立同分布(而仅需要满足相关和方差这两个稍弱的条件)。
指在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量的这一定理。高斯--马尔可夫定理的意义在于,当经典假定成立时,我们不需要再去寻找其它无偏估计量,没有一个会优于普通最小二乘估计量。也就是说,如果存在一个好的线性无偏估计量,这个估计量的方差最多与普通最小二乘估计量的方差一样小,不会小于普通最小二乘估计量的方差。
蒙特卡罗方法:是一种基于采样的随机近似方法,主要应用于随机采样
本文介绍了基于MATLAB的GM-MCMC(高斯混合马尔科夫-蒙特卡洛)算法用于线性地震反演。首先阐述了高斯-马尔可夫定理和蒙特卡洛方法的基本原理,接着展示了仿真的具体效果,并提供了MATLAB仿真源码。
订阅专栏 解锁全文
1181

被折叠的 条评论
为什么被折叠?



