目录
1.算法概述
在数字通信系统中,码间串扰和加性噪声是造成信号传输失真的主要因素,为克服码间串扰,在接收滤波器和抽样判决器之间附加一个可调滤波器,用以校正(或补偿)这些失真。对系统中线性失真进行校正的过程称为均衡,实现均衡的滤波器称为均衡滤波器。
由于信道特性是变化的,均衡器的参数也应该随之而改变,可以自动调整参数以保持最佳工作状态的均衡器就是自适应均衡器(自适应滤波器)。自适应均衡器有频域均衡和时域均衡之分。频域均衡器只能均衡时变信道的幅频特性,不能有效地均衡群时延特性,在数字信号中一般不采用。时域均衡器利用它所产生的响应去补偿已畸变的信号波形,可以有效地抑制码间串扰和加性干扰。随着数字信号处理理论和超大规模集成电路技术的发展,时域均衡已广泛应用于数字通信的各个领域。
接收端的码间干扰(ISI),使系统误码率上升,严重情况下使系统无法继续正常工作。理论和实践证明,在接收系统中插入一种滤波器,可以校正和补偿系统特性,减少码间干扰的影响。这种起补偿作用的滤波器称为均衡器。
随着数字信号处理理论和超大规模集成电路的发展,时域均衡已成为当今高速数字通信中所使用的主要方法。调整滤波器抽头系数的方法有手动调整和自动调整。如果接收端知道信道特性,例如信道冲击响应或频域响应,一般采用比
本文介绍了数字通信系统中线性预均衡技术的重要性,特别是MMSE和ZF算法在克服码间串扰和加性噪声中的应用。通过matlab仿真,展示了这两种算法的均衡效果,并提供了源码,以帮助理解均衡器的工作原理和性能。
订阅专栏 解锁全文
621

被折叠的 条评论
为什么被折叠?



