VGG13的参数量
conv1: 3×3×3×64+64=1,7923\times3\times3\times64+64 = 1,7923×3×3×64+64=1,792
conv2: 3×3×64×64+64=36,9283\times3\times64\times64+64 = 36,9283×3×64×64+64=36,928
conv3: 3×3×64×128+128=73,8563\times3\times64\times128+128 = 73,8563×3×64×128+128=73,856
conv4: 3×3×128×128+128=147,5843\times3\times128\times128+128 = 147,5843×3×128×128+128=147,584
conv5: 3×3×128×256+256=295,1683\times3\times128\times256+256 = 295,1683×3×128×256+256=295,168
conv6: 3×3×256×256+256=590,0803\times3\times256\times256+256 = 590,0803×3×256×256+256=590,080
conv7: 3×3×256×512+512=1,180,1603\times3\times256\times512+512 = 1,180,1603×3×256×512+512=1,180,160
conv8: 3×3×512×512+512=2,359,8083\times3\times512\times512+512 = 2,359,8083×3×512×512+512=2,359,808
conv9: 3×3×512×512+512=2,359,8083\times3\times512\times512+512 = 2,359,8083×3×512×512+512=2,359,808
conv10: 3×3×512×512+512=2,359,8083\times3\times512\times512+512 = 2,359,8083×3×512×512+512=2,359,808
卷积层共有trainable参数的个数为:9,404,992