链接:http://codeforces.com/problemset/problem/389/A
Fox and Number Game
Fox Ciel is playing a game with numbers now.
Ciel has n positive integers: x1, x2, ..., xn. She can do the following operation as many times as needed: select two different indexes i and j such that xi > xj hold, and then apply assignment xi = xi - xj. The goal is to make the sum of all numbers as small as possible.
Please help Ciel to find this minimal sum.
Input
The first line contains an integer n (2 ≤ n ≤ 100). Then the second line contains n integers: x1, x2, ..., xn (1 ≤ xi ≤ 100).
Output
Output a single integer — the required minimal sum.
Sample test(s)
2 1 2
2
3 2 4 6
6
2 12 18
12
5 45 12 27 30 18
15
Note
In the first example the optimal way is to do the assignment: x2 = x2 - x1.
In the second example the optimal sequence of operations is: x3 = x3 - x2, x2 = x2 - x1.
大意——有一个游戏规则是这样的:给你n个正整数,从中找到两个不同的数,将较大的数变成大数减去小数的差。你可以进行多次操作,目标是使得最后得到的n个数的和尽量小。
思路——一道含数学问题的贪心题。由数学中的更相减损术可以知道,两个数一直作差运算,最后一定是相等的,并且最后这个数为原来的两个数的最大公约数。那么问题中的n个数要使其和最小,就必须作很多次差运算,直至最后所有数全部相等。那么就可以知道最后这个数为这n个数的最大公约数,从而问题转化为求这n个数的最大公约数,最后将它们的最大公约数乘以n即为答案。
复杂度分析——时间复杂度:O(n),空间复杂度:O(1)
附上AC代码:
#include <iostream>
#include <cstdio>
#include <string>
#include <cmath>
#include <iomanip>
#include <ctime>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
#include <set>
#include <map>
//#pragma comment(linker, "/STACK:102400000, 102400000")
using namespace std;
typedef long long ll;
const double pi = acos(-1.0);
const double e = exp(1.0);
const double eps = 1e-8;
int n, x;
int gcd(int a, int b);
int main()
{
ios::sync_with_stdio(false);
while (~scanf("%d", &n))
{
int ans=0, cnt=n;
while (n--)
{
scanf("%d", &x);
ans = gcd(ans, x);
}
printf("%d\n", ans*cnt);
}
return 0;
}
int gcd(int a, int b)
{
return b ? gcd(b, a%b) : a;
}