目录
一、定义
贝叶斯方法
贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主观偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。
朴素贝叶斯算法
朴素贝叶斯算法(Naive Bayesian algorithm) 是应用最为广泛的分类算法之一。
朴素贝叶斯方法是在贝叶斯算法的基础上进行了相应的简化,即假定给定目标值时属性之间相互条件独立。也就是说没有哪个属性变量对于决策结果来说占有着较大的比重,也没有哪个属性变量对于决策结果占有着较小的比重。虽然这个简化方式在一定程度上降低了贝叶斯分类算法的分类效果,但是在实际的应用场景中,极大地简化了贝叶斯方法的复杂性。
二、贝叶斯公式
先验概率
代表还没有训练模型之前,根据历史数据/经验估算
拥有的初始概率。
常被称为
的先验概率(prior probability) ,它反映了
的概率分布,该分布独立于样本。
后验概率
给定数据样本
时
成立的概率
被称为后验概率(posterior probability),因为它反映了在看到数据样本
后
成立的置信度。
贝叶斯定理
已知两个独立事件A和B,事件B发生的前提下,事件A发生的概率可以表示为P(A|B),即上图中橙色部分占红色部分的比例,即: