打卡第45天:预训练模型

知识点回顾:
1.预训练的概念
2.常见的分类预训练模型
3.图像预训练模型的发展史
4.预训练的策略
5.预训练代码实战:resnet18

作业:
1.尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同
2.尝试通过ctrl进入resnet的内部,观察残差究竟是什么

​
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision.models import resnet18, densenet121
from torchsummary import summary  # 查看模型结构
import matplotlib.pyplot as plt
 
# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
# CIFAR10 数据预处理
transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_set = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(train_set, batch_size=128, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)
 
class DenseNetC10(nn.Module):
    def __init__(self, num_classes=10):
        super(DenseNetC10, self).__init__()
        # 压缩原版 DenseNet121,减少层数和通道数
        self.features = nn.Sequential(
            nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            # 3个密集块,每个块含3层
            self._make_dense_block(32, 32, num_layers=3),
            self._make_dense_block(64, 32, num_layers=3),
            self._make_dense_block(96, 32, num_layers=3),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.AdaptiveAvgPool2d((1, 1))
        )
        self.classifier = nn.Linear(128, num_classes)
    
    def _make_dense_block(self, in_channels, growth_rate, num_layers):
        layers = []
        for _ in range(num_layers):
            layers.append(nn.Conv2d(in_channels, growth_rate, kernel_size=3, padding=1, bias=False))
            layers.append(nn.BatchNorm2d(growth_rate))
            layers.append(nn.ReLU(inplace=True))
            in_channels += growth_rate
        return nn.Sequential(*layers)
    
    def forward(self, x):
        features = self.features(x)
        out = features.view(features.size(0), -1)
        out = self.classifier(out)
        return out
 
# 初始化模型
models = {
    'DenseNet-C10': DenseNetC10().to(device),
    'MobileViT': MobileViT().to(device),
    'RepVGG': RepVGG().to(device),
    'ResNet18': resnet18(pretrained=False, num_classes=10).to(device)  # 对比基准
}
 
# 训练超参数
criterion = nn.CrossEntropyLoss()
accuracies = {}
 
for model_name, model in models.items():
    print(f'\nTraining {model_name}...')
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
    scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)
    best_acc = 0.0
    for epoch in range(1, 201):
        train_model(model, criterion, optimizer, epoch)
        acc = test_model(model, criterion)
        if acc > best_acc:
            best_acc = acc
    accuracies[model_name] = best_acc
 
# 打印对比结果
print('\nFinal Accuracy Comparison:')
for name, acc in accuracies.items():
    print(f'{name}: {acc:.2f}%')
 
def visualize_residual(model, data):
    # 注册钩子函数捕捉残差块输出
    residuals = []
    def hook(module, input, output):
        residual = output - input[0]  # 残差 = 输出 - 输入
        residuals.append(residual.detach().cpu())
    
    # 选择ResNet18的第一个残差块(layer1[0])
    model.layer1[0].register_forward_hook(hook)
    with torch.no_grad():
        model(data.to(device))
    
    # 可视化残差图(取第一个样本的第一个通道)
    residual = residuals[0][0, 0, :, :]  # 形状(32,32)
    plt.figure(figsize=(6, 4))
    plt.subplot(1, 2, 1)
    plt.imshow(data[0].permute(1, 2, 0))  # 原始图像
    plt.title('Input Image')
    plt.subplot(1, 2, 2)
    plt.imshow(residual, cmap='coolwarm')  # 残差热力图
    plt.title('Residual Map')
    plt.colorbar()
    plt.show()
 
# 测试残差可视化(用ResNet18和测试集中的一张图像)
resnet_model = resnet18(num_classes=10).to(device)
data, _ = next(iter(test_loader))
visualize_residual(resnet_model, data[:1])  # 取第一个样本

​

使用ResNet50模型,结果 

 

最终模型训练最佳测试准确率为88.05%

@浙大疏锦行 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值