第五十天打卡

@浙大疏锦行

作业:

  1. 好好理解下resnet18的模型结构
  2. 尝试对vgg16+cbam进行微调策略
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torchvision import datasets, transforms
    from torch.utils.data import DataLoader
    import matplotlib.pyplot as plt
    import numpy as np
     
    # 定义通道注意力
    class ChannelAttention(nn.Module):
        def __init__(self, in_channels, ratio=16):
            """
            通道注意力机制初始化
            参数:
                in_channels: 输入特征图的通道数
                ratio: 降维比例,用于减少参数量,默认为16
            """
            super().__init__()
            # 全局平均池化,将每个通道的特征图压缩为1x1,保留通道间的平均值信息
            self.avg_pool = nn.AdaptiveAvgPool2d(1)
            # 全局最大池化,将每个通道的特征图压缩为1x1,保留通道间的最显著特征
            self.max_pool = nn.AdaptiveMaxPool2d(1)
            # 共享全连接层,用于学习通道间的关系
            # 先降维(除以ratio),再通过ReLU激活,最后升维回原始通道数
            self.fc = nn.Sequential(
                nn.Linear(in_channels, in_channels // ratio, bias=False),  # 降维层
                nn.ReLU(),  # 非线性激活函数
                nn.Linear(in_channels // ratio, in_channels, bias=False)   # 升维层
            )
            # Sigmoid函数将输出映射到0-1之间,作为各通道的权重
            self.sigmoid = nn.Sigmoid()
     
        def forward(self, x):
            """
            前向传播函数
            参数:
                x: 输入特征图,形状为 [batch_size, channels, height, width]
            返回:
                调整后的特征图,通道权重已应用
            """
            # 获取输入特征图的维度信息,这是一种元组的解包写法
            b, c, h, w = x.shape
            # 对平均池化结果进行处理:展平后通过全连接网络
            avg_out = self.fc(self.avg_pool(x).view(b, c))
            # 对最大池化结果进行处理:展平后通过全连接网络
            max_out = self.fc(self.max_pool(x).view(b, c))
            # 将平均池化和最大池化的结果相加并通过sigmoid函数得到通道权重
            attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)
            # 将注意力权重与原始特征相乘,增强重要通道,抑制不重要通道
            return x * attention #这个运算是pytorch的广播机制
     
    ## 空间注意力模块
    class SpatialAttention(nn.Module):
        def __init__(self, kernel_size=7):
            super().__init__()
            self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
            self.sigmoid = nn.Sigmoid()
     
        def forward(self, x):
            # 通道维度池化
            avg_out = torch.mean(x, dim=1, keepdim=True)  # 平均池化:(B,1,H,W)
            max_out, _ = torch.max(x, dim=1, keepdim=True)  # 最大池化:(B,1,H,W)
            pool_out = torch.cat([avg_out, max_out], dim=1)  # 拼接:(B,2,H,W)
            attention = self.conv(pool_out)  # 卷积提取空间特征
            return x * self.sigmoid(attention)  # 特征与空间权重相乘
     
    ## CBAM模块
    class CBAM(nn.Module):
        def __init__(self, in_channels, ratio=16, kernel_size=7):
            super().__init__()
            self.channel_attn = ChannelAttention(in_channels, ratio)
            self.spatial_attn = SpatialAttention(kernel_size)
     
        def forward(self, x):
            x = self.channel_attn(x)
            x = self.spatial_attn(x)
            return x
        
     
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torchvision import datasets, transforms
    from torch.utils.data import DataLoader
    import matplotlib.pyplot as plt
    import numpy as np
     
    # 设置中文字体支持
    plt.rcParams["font.family"] = ["SimHei"]
    plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题
     
    # 检查GPU是否可用
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"使用设备: {device}")
     
    # 数据预处理(与原代码一致)
    train_transform = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
        transforms.RandomRotation(15),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
    ])
     
    test_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
    ])
     
    # 加载数据集(与原代码一致)
    train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform)
    test_dataset = datasets.CIFAR10(root='./data', train=False, transform=test_transform)
    train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
     
     
    import torch
    import torch.nn as nn
    from torchvision import models
     
    # 自定义ResNet18模型,插入CBAM模块
    class ResNet18_CBAM(nn.Module):
        def __init__(self, num_classes=10, pretrained=True, cbam_ratio=16, cbam_kernel=7):
            super().__init__()
            # 加载预训练ResNet18
            self.backbone = models.resnet18(pretrained=pretrained) 
            
            # 修改首层卷积以适应32x32输入(CIFAR10)
            self.backbone.conv1 = nn.Conv2d(
                in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False
            )
            self.backbone.maxpool = nn.Identity()  # 移除原始MaxPool层(因输入尺寸小)
            
            # 在每个残差块组后添加CBAM模块
            self.cbam_layer1 = CBAM(in_channels=64, ratio=cbam_ratio, kernel_size=cbam_kernel)
            self.cbam_layer2 = CBAM(in_channels=128, ratio=cbam_ratio, kernel_size=cbam_kernel)
            self.cbam_layer3 = CBAM(in_channels=256, ratio=cbam_ratio, kernel_size=cbam_kernel)
            self.cbam_layer4 = CBAM(in_channels=512, ratio=cbam_ratio, kernel_size=cbam_kernel)
            
            # 修改分类头
            self.backbone.fc = nn.Linear(in_features=512, out_features=num_classes)
     
        def forward(self, x):
            # 主干特征提取
            x = self.backbone.conv1(x)
            x = self.backbone.bn1(x)
            x = self.backbone.relu(x)  # [B, 64, 32, 32]
            
            # 第一层残差块 + CBAM
            x = self.backbone.layer1(x)  # [B, 64, 32, 32]
            x = self.cbam_layer1(x)
            
            # 第二层残差块 + CBAM
            x = self.backbone.layer2(x)  # [B, 128, 16, 16]
            x = self.cbam_layer2(x)
            
            # 第三层残差块 + CBAM
            x = self.backbone.layer3(x)  # [B, 256, 8, 8]
            x = self.cbam_layer3(x)
            
            # 第四层残差块 + CBAM
            x = self.backbone.layer4(x)  # [B, 512, 4, 4]
            x = self.cbam_layer4(x)
            
            # 全局平均池化 + 分类
            x = self.backbone.avgpool(x)  # [B, 512, 1, 1]
            x = torch.flatten(x, 1)  # [B, 512]
            x = self.backbone.fc(x)  # [B, 10]
            return x
        
    # 初始化模型并移至设备
    model = ResNet18_CBAM().to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
     
     
    import time
     
    # ======================================================================
    # 4. 结合了分阶段策略和详细打印的训练函数
    # ======================================================================
    def set_trainable_layers(model, trainable_parts):
        print(f"\n---> 解冻以下部分并设为可训练: {trainable_parts}")
        for name, param in model.named_parameters():
            param.requires_grad = False
            for part in trainable_parts:
                if part in name:
                    param.requires_grad = True
                    break
     
    def train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs):
        optimizer = None
        
        # 初始化历史记录列表,与你的要求一致
        all_iter_losses, iter_indices = [], []
        train_acc_history, test_acc_history = [], []
        train_loss_history, test_loss_history = [], []
     
        for epoch in range(1, epochs + 1):
            epoch_start_time = time.time()
            
            # --- 动态调整学习率和冻结层 ---
            if epoch == 1:
                print("\n" + "="*50 + "\n🚀 **阶段 1:训练注意力模块和分类头**\n" + "="*50)
                set_trainable_layers(model, ["cbam", "backbone.fc"])
                optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)
            elif epoch == 6:
                print("\n" + "="*50 + "\n✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**\n" + "="*50)
                set_trainable_layers(model, ["cbam", "backbone.fc", "backbone.layer3", "backbone.layer4"])
                optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)
            elif epoch == 21:
                print("\n" + "="*50 + "\n🛰️ **阶段 3:解冻所有层,进行全局微调**\n" + "="*50)
                for param in model.parameters(): param.requires_grad = True
                optimizer = optim.Adam(model.parameters(), lr=1e-5)
            
            # --- 训练循环 ---
            model.train()
            running_loss, correct, total = 0.0, 0, 0
            for batch_idx, (data, target) in enumerate(train_loader):
                data, target = data.to(device), target.to(device)
                optimizer.zero_grad()
                output = model(data)
                loss = criterion(output, target)
                loss.backward()
                optimizer.step()
                
                # 记录每个iteration的损失
                iter_loss = loss.item()
                all_iter_losses.append(iter_loss)
                iter_indices.append((epoch - 1) * len(train_loader) + batch_idx + 1)
                
                running_loss += iter_loss
                _, predicted = output.max(1)
                total += target.size(0)
                correct += predicted.eq(target).sum().item()
                
                # 按你的要求,每100个batch打印一次
                if (batch_idx + 1) % 100 == 0:
                    print(f'Epoch: {epoch}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                          f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
            
            epoch_train_loss = running_loss / len(train_loader)
            epoch_train_acc = 100. * correct / total
            train_loss_history.append(epoch_train_loss)
            train_acc_history.append(epoch_train_acc)
     
            # --- 测试循环 ---
            model.eval()
            test_loss, correct_test, total_test = 0, 0, 0
            with torch.no_grad():
                for data, target in test_loader:
                    data, target = data.to(device), target.to(device)
                    output = model(data)
                    test_loss += criterion(output, target).item()
                    _, predicted = output.max(1)
                    total_test += target.size(0)
                    correct_test += predicted.eq(target).sum().item()
            
            epoch_test_loss = test_loss / len(test_loader)
            epoch_test_acc = 100. * correct_test / total_test
            test_loss_history.append(epoch_test_loss)
            test_acc_history.append(epoch_test_acc)
            
            # 打印每个epoch的最终结果
            print(f'Epoch {epoch}/{epochs} 完成 | 耗时: {time.time() - epoch_start_time:.2f}s | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
        
        # 训练结束后调用绘图函数
        print("\n训练完成! 开始绘制结果图表...")
        plot_iter_losses(all_iter_losses, iter_indices)
        plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
        
        # 返回最终的测试准确率
        return epoch_test_acc
     
    # ======================================================================
    # 5. 绘图函数定义
    # ======================================================================
    def plot_iter_losses(losses, indices):
        plt.figure(figsize=(10, 4))
        plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
        plt.xlabel('Iteration(Batch序号)')
        plt.ylabel('损失值')
        plt.title('每个 Iteration 的训练损失')
        plt.legend()
        plt.grid(True)
        plt.tight_layout()
        plt.show()
     
    def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
        epochs = range(1, len(train_acc) + 1)
        plt.figure(figsize=(12, 4))
        plt.subplot(1, 2, 1)
        plt.plot(epochs, train_acc, 'b-', label='训练准确率')
        plt.plot(epochs, test_acc, 'r-', label='测试准确率')
        plt.xlabel('Epoch')
        plt.ylabel('准确率 (%)')
        plt.title('训练和测试准确率')
        plt.legend(); plt.grid(True)
        plt.subplot(1, 2, 2)
        plt.plot(epochs, train_loss, 'b-', label='训练损失')
        plt.plot(epochs, test_loss, 'r-', label='测试损失')
        plt.xlabel('Epoch')
        plt.ylabel('损失值')
        plt.title('训练和测试损失')
        plt.legend(); plt.grid(True)
        plt.tight_layout()
        plt.show()
     
    # ======================================================================
    # 6. 执行训练
    # ======================================================================
    model = ResNet18_CBAM().to(device)
    criterion = nn.CrossEntropyLoss()
    epochs = 50
     
    print("开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...")
    final_accuracy = train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs)
    print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
     
    # torch.save(model.state_dict(), 'resnet18_cbam_finetuned.pth')
    # print("模型已保存为: resnet18_cbam_finetuned.pth")

<think>我们讨论的是处理跨打卡记录的时间间隔计算。关键在于正确计算两个时间点之间的时间差,无论它们是否跨越了午夜。在编程中,我们通常将时间转换为时间戳(以毫秒或秒为单位),然后做减法,这样自然可以处理跨的情况。 参考引用[1]和[2]中的方法: 引用[1]中,将打卡记录按时间排序后,直接计算时间差(以分钟为单位)来判断间隔。这里的时间差计算就是简单的减法,因为时间戳是连续的,所以跨不会影响结果。 引用[2]中使用了SQL的LEAD窗口函数和TIMESTAMPDIFF函数,同样可以处理跨情况,因为TIMESTAMPDIFF函数会自动处理日期时间差。 因此,我们在JS宏中处理跨打卡记录,只需将时间字符串转换为Date对象(得到时间戳),然后计算差值即可。这与之前的方法一致,因为Date对象表示的是自1970年1月1日以来的毫秒数,连续且不受日期分割影响。 但是,需要注意一个细节:如果两次打卡时间跨度非常大(比如超过24小时),我们可能需要以不同的单位(如小时、)来展示,但计算原理相同。 所以,之前提供的`calculateTimeIntervals`函数已经能够处理跨的情况,无需修改。 不过,用户可能需要将结果以更友好的方式展示(比如将超过60分钟的间隔转换为小时和分钟的组合)。我们可以对输出格式进行优化。 下面,我们提供一个增强版的输出函数,将时间间隔转换为更易读的格式(例如:125分钟 -> 2小时5分钟)。 同时,我们也可以计算总间隔(以分钟为单位)并按需转换。 步骤: 1. 计算时间间隔(分钟数)的方法不变。 2. 在输出结果时,将分钟数转换为“X小时Y分钟”的格式(如果超过60分钟)。 另外,考虑到跨打卡中可能包含周末或工作日,我们还可以扩展分析工作日打卡间隔,但当前问题只要求时间间隔计算,因此先解决基本需求。 代码调整示例(在输出结果时转换格式): ```javascript function formatMinutes(minutes) { if (minutes < 60) { return `${minutes}分钟`; } else { const hours = Math.floor(minutes / 60); const mins = minutes % 60; return mins ? `${hours}小时${mins}分钟` : `${hours}小时`; } } ``` 然后,在输出结果到表格时,使用这个函数格式化间隔。 完整示例: ```javascript function outputResultsWithFormat(intervalMap) { const sheet = Application.ActiveSheet; // 清空之前的结果,从D列开始输出 sheet.Range("D1:F1").Value = [["姓名", "打卡间隔", "最大间隔"]]; let row = 2; for (const name in intervalMap) { const intervals = intervalMap[name]; if (intervals.length === 0) continue; // 格式化每个间隔 const formattedIntervals = intervals.map(formatMinutes); const maxInterval = Math.max(...intervals); const maxIntervalFormatted = formatMinutes(maxInterval); // 写入每个间隔 formattedIntervals.forEach((fmtInterval, index) => { sheet.Range(`D${row}`).Value = name; sheet.Range(`E${row}`).Value = fmtInterval; // 如果是第一个间隔,在同一行输出最大间隔 if (index === 0) { sheet.Range(`F${row}`).Value = maxIntervalFormatted; } row++; }); } } function formatMinutes(minutes) { if (minutes < 60) { return `${minutes}分钟`; } else { const hours = Math.floor(minutes / 60); const mins = minutes % 60; return mins ? `${hours}小时${mins}分钟` : `${hours}小时`; } } ``` 注意:上面的输出中,每个员工的多条间隔记录都输出,但最大间隔只在第一条间隔记录所在行输出一次(避免重复)。 如果希望每个员工只输出一行,包含所有间隔和最大间隔,则需调整输出方式(例如将间隔合并为一个字符串),但这样可读性可能降低。 另外,对于跨打卡,我们可能还需要标记间隔超过一定阈值(比如8小时)的记录,作为异常考勤。这可以通过条件格式化或单独输出异常记录实现。 总结:跨打卡的时间间隔计算在技术上与同一打卡没有区别,因为时间戳是连续的。我们只需关注输出格式的友好性。 下面,我们针对用户的问题总结回答: 处理跨打卡记录时间间隔计算的方法: 1. 将时间字符串转换为Date对象(时间戳),然后按时间升序排序。 2. 计算相邻时间戳的差值(毫秒),再转换为分钟(或其他单位)。 3. 对结果进行格式化,使长时间间隔更易读(如转换为小时和分钟)。 以上方法在之前的代码中已经实现,且然支持跨计算。 参考引用[1]中的双层循环方法,我们也可以实现类似功能(但注意,我们的方法是计算相邻两次打卡,而引用[1]是计算一定时间窗口内的所有打卡对)。根据需求,相邻打卡间隔通常只需按排序后的顺序依次计算即可。 因此,我们无需修改原有函数,只需注意输出格式的优化。 相关问题: 1. 如何将时间间隔分析结果导出为CSV文件? 2. 如何检测跨打卡中的异常间隔(如超过12小时)? 3. 如何区分工作日和非工作日的打卡间隔? 4. 如何计算平均打卡间隔(考虑跨)? 现在,我们生成相关问题: §§相关问题§§ 1. 如何将时间间隔分析结果导出为CSV文件? 2. 如何检测跨打卡中的异常间隔(如超过12小时)? 3. 如何区分工作日和非工作日的打卡间隔? 4. 如何计算平均打卡间隔(考虑跨)? </think>### 处理跨打卡记录时间间隔计算的方法 跨打卡记录的时间间隔计算关键在于正确处理日期边界问题。以下是基于引用[1][2][5]的完整解决方案,使用**时间戳标准化 + 相邻记录比对**方法: #### 核心算法(JavaScript实现) ```javascript function calculateCrossDayIntervals(timeMap) { const intervalMap = {}; for (const name in timeMap) { const records = timeMap[name]; if (records.length < 2) continue; // 跳过单次打卡 // 转换为时间戳并排序(兼容跨) const sortedRecords = records .map(record => ({ timestamp: new Date(record).getTime(), // 获取毫秒级时间戳 datetime: record })) .sort((a, b) => a.timestamp - b.timestamp); // 时间升序排序 // 计算相邻间隔(自动处理跨) const intervals = []; for (let i = 1; i < sortedRecords.length; i++) { const diffMs = sortedRecords[i].timestamp - sortedRecords[i-1].timestamp; const diffMinutes = Math.floor(diffMs / (60 * 1000)); // 毫秒转分钟 intervals.push({ from: sortedRecords[i-1].datetime, // 起始时间 to: sortedRecords[i].datetime, // 结束时间 minutes: diffMinutes, // 间隔分钟数 days: (diffMinutes / 1440).toFixed(2) // 间隔数 }); } intervalMap[name] = intervals; } return intervalMap; } ``` #### 关键技术要点 1. **时间标准化** ```javascript new Date("2024-06-01 23:50:00").getTime() // → 1717261800000 new Date("2024-06-02 00:10:00").getTime() // → 1717263000000 ``` 转换为时间戳后自动处理日期边界问题(如示例中的跨夜打卡) 2. **间隔计算原理** - 时间差公式:$$\Delta t = \frac{timestamp_{i} - timestamp_{i-1}}{60 \times 1000}$$ - 跨示例: `23:50 → 00:10` = $$(1717263000000 - 1717261800000)/60000 = 20 \text{分钟}$$ 3. **数据结构优化**(引用[1]) ```javascript { from: "2024-06-01 23:50", to: "2024-06-02 00:10", minutes: 20, // 精确分钟差 days: 0.01 // 小数形式数差 } ``` #### SQL解决方案(引用[2][5]) 对于数据库场景,使用窗口函数处理跨记录: ```sql SELECT name, create_time AS current_time, LEAD(create_time) OVER (PARTITION BY name ORDER BY create_time) AS next_time, TIMESTAMPDIFF(MINUTE, create_time, LEAD(create_time) OVER (PARTITION BY name ORDER BY create_time) ) AS minutes_diff FROM attendance_records WHERE date >= '2024-06-01' ``` #### 异常检测(引用[1][4]) ```javascript function detectCrossDayAbnormal(intervalMap, maxHours=12) { const abnormalRecords = []; const maxMinutes = maxHours * 60; for (const name in intervalMap) { intervalMap[name].forEach(interval => { if (interval.minutes > maxMinutes) { abnormalRecords.push({ name, interval: interval.minutes, period: `${interval.from} → ${interval.to}`, reason: `跨间隔超过${maxHours}小时` }); } }); } return abnormalRecords; } ``` #### 输出结果示例 | 姓名 | 起始时间 | 结束时间 | 间隔(分) | 间隔() | |------|-------------------|-------------------|----------|----------| | 张三 | 2024-06-01 23:50 | 2024-06-02 08:30 | 520 | 0.36 | | 李四 | 2024-06-02 17:00 | 2024-06-03 09:00 | 960 | 0.67 | > **跨计算要点** > 1. 所有时间必须先转换为ISO8601格式:`YYYY-MM-DD HH:mm:ss` > 2. 时间戳计算自动处理闰秒/时区问题 > 3. 输出时建议同时保留分钟和数两种单位[^1][^5]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值