Codeforces 839B (implement)

本文提供了一道累心的模拟题及其解决方案,通过具体的样例展示如何进行逻辑判断与资源分配,确保每一步操作都在可行范围内,对于理解复杂条件下的算法实现具有一定的参考价值。

累心的模拟题:
附上几个特殊样例:

3 10
2 2 2 2 2 2 2 2 2 3
YES
3 12
2 2 2 2 2 2 2 2 2 1 1 1
YES
2 8
2 2 2 2 2 2 1 1
YES
1 4
1 1 2 2
YES
1 4
2 2 2 2
NO

代码:

/*
* 201708016
*/

#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;

int main()
{
    int n,k;
    scanf("%d%d",&n,&k);
    int numf = n;
    int numt = n*2;
    int numo = 0;
    for(int i=0;i<k;i++)
    {
        int t;
        scanf("%d",&t);
        int a = t/4;
        int b = t%4;
        if(a>numf)
        {
            a-=numf;
            numf=0;
            //leave = b
            b += a*4;
            int c = b/2;
            int d = b%2;
            if(c>numt)
            {
                c-=numt;
                numt=0;
                //leave = d
                d+=c*2;
                if(d>numo)
                {
                    printf("NO\n");
                    return 0;
                }else
                {
                    numo-=d;
                }
            }else
            {
                numt-=c;
                if(d==1)
                {
                    if(numo>0) numo--;
                    else if(numt>0){
                        numt--;
                    }else{
                        printf("NO\n");
                        return 0;
                    }
                }
            }
        }else
        {
            numf-=a;
            if(b==3)
            {
                if(numo>2) numo-=3;
                else if(numt>0&&numo>0){
                    numt--;
                    numo--;
                }else if(numf>0) numf--;
                else if(numt>1) numt-=2;
                else{
                    printf("NO\n");
                    return 0;
                }
            }else if(b==2)
            {
                if(numt>0) numt--;
                else if(numf>0)
                {
                    numf--;
                    numo++;
                }else if(numo>1) numo-=2;
                else if(numo>0&&numf>0)
                {
                    numo--;
                    numf--;
                    numt++;
                }else{
                    printf("NO\n");
                    return 0;
                }
            }else if(b==1){
                if(numo>0) numo--;
                else if(numf>0){
                    numf--;
                    numt++;
                }else if(numt>0) numt--;
                else
                {
                    printf("NO\n");
                    return 0;                   
                }
            }
        }
    }
    printf("YES\n");
    return 0;
}
请使用c++解决以下问题: ## 题目描述 给定长度为 $n$ 的正整数序列 $a$,求 $g(a)$ 的值: $$ g(a)=\max_{a'}\{f(a')\}\\ f(a)=\sum_{i=2}^{n} |a_{i}-a_{i-1}| $$ 其中,$a'$ 是序列 $a$ 经过任意重排后得到的任意一个序列。 但是这实在是一个三岁小宝宝都会的简单题,因此你想对 $m$ 个序列都求出上述式子的最大值,这 $m$ 个序列满足以下条件。 - 第 $i$ 个序列 $p_i$ 长度为 $i$。 - 第一个序列 $p_1$ 为 $[b'_1=b_1]$。 - 第 $i$($2\leq i\leq m$)个序列 $p_i$ 满足:对于任意满足 $1\leq j<i$ 的正整数 $j$ 满足 $p_{i,j}=p_{i-1,j}$,且 $p_{i,i} = b'_i=b_i\oplus (T\cdot f(p_{i-1}))$。 其中,$\oplus$ 表示二进制按位异或。 ## 输入格式 第一行两个非负整数 $m$ 和 $T$,分别表示你需要求出重排后 $f$ 最大值的序列个数以及生成序列参数。 第二行 $n$ 个非负整数表示 $b_1,\dots,b_m$。 **注意:【数据范围】一节仅对 $b'_i$ 的范围做出了保证,没有对 $b_i$ 的范围做出保证。** ## 输出格式 共一行一个非负整数,为 $\oplus_{i=1}^{m} g(p_i)$。 ## 输入输出样例 #1 ### 输入 #1 ``` 5 0 1 2 3 4 5 ``` ### 输出 #1 ``` 14 ``` ## 输入输出样例 #2 ### 输入 #2 ``` 8 0 5 2 7 1 4 3 8 6 ``` ### 输出 #2 ``` 2 ``` ## 说明/提示 **【样例解释 #1】** $g(p_1),g(p_2),\dots,g(p_m)$ 分别为 $0,1,3,7,11$。 令 $p'_i$ 为 $p_i$ 重排后**任意**满足 $f(p'_i)$ 最大的序列。 $p_1=[1]$,$p'_1=[1]$,$f(p'_1)=0$。 $p_2=[1,2]$,$p'_2=[1,2]$,$f(p'_2)=|1-2|=1$。 $p_3=[1,2,3]$,$p'_3=[1,3,2]$,$f(p'_3)=|1-3|+|3-2|=3$。 $p_4=[1,2,3,4]$,$p'_4=[3,1,4,2]$,$f(p'_4)=|3-1|+|1-4|+|4-2|=7$。 $p_5=[1,2,3,4,5]$,$p'_5=[4,2,5,1,3]$,$f(p'_5)=|4-2|+|2-5|+|5-1|+|1-3|=11$。 该样例满足测试点 $1$ 的限制。 **【样例解释 #2】** $g(p_1),g(p_2),\dots,g(p_m)$ 分别为 $0,3,8,15,17,19,27,31$。 该样例满足测试点 $3$ 的限制。 **【数据范围】** 对于全部测试点:$1\leq m\leq 3\times 10^6$,$1\leq b'_i\leq 10^9$,$T\in \{0,1\}$。 | 测试点编号 | $m\leq$ | $T=$ | 特殊性质 | | :---------: | :------------: | :--: | :------: | | $1$ | $8$ | $0$ | AB | | $2$ | $100$ | $0$ | AB | | $3$ | $10^3$ | $0$ | AB | | $4$ | $2\times 10^5$ | $0$ | AB | | $5$ | $2\times 10^5$ | $0$ | A | | $6$ | $2\times 10^5$ | $1$ | AB | | $7$ | $2\times 10^5$ | $1$ | A | | $8$ | $2\times 10^5$ | $1$ | 无 | | $9$ | $10^6$ | $1$ | 无 | | $10$ | $3\times 10^6$ | $1$ | 无 | 特殊性质 A:$b'_i\leq m$($1\leq i\leq m$)。 特殊性质 B:$b'_i\neq b'_j$($1\leq i<j\leq m$)。
最新发布
10-30
时间限制:1000ms 内存限制:512MB 输入文件名:s.in 输出文件名:s.out 题目描述: 给定一个长度为 N 的只含小写字母的字符串 S,每次操作可以选择一个位置 1 ≤ x ≤ N 和一个小写字母 c,接着把 Sₓ 改为 c。 你需要操作若干次,使得操作结束后,每相邻 K 个字符都不同,求最少的操作次数。保证 1 ≤ K ≤ 13。 输入格式: 第一行一个整数 T,表示测试数据组数。 接下来 T 组测试数据,对于每组测试数据: 第一行两个整数 N, K,分别表示字符串长度和子串的长度。 第二行一个长度为 N 的字符串 S。 输出格式: 对于每组测试数据,输出一行一个整数表示最少的操作次数。 样例输入 1(input1): 5 6 3 abaaba 5 2 hooch 8 3 cherykid 9 3 abbabbaba 9 3 aabbaabba 样例输出 1(output1): 2 1 0 3 4 样例 #1 解释: 对于第一组数据,可以用 2 次操作把 S 改为 abcabc,每相邻三个字符组成的字符串分别是 abc、bca、cab、abc,都满足包含的字符互不相同。 对于第三组数据,请注意可以不进行操作。 数据范围: 对于所有数据,保证 1 ≤ T ≤ 10⁵,1 ≤ ∑N ≤ 10⁶,1 ≤ K ≤ 13,S 中只含有小写字符。 子任务说明: 子任务 1:∑N ≤ 10,K ≤ 10,分值 10 子任务 2:∑N ≤ 100,K ≤ 10,分值 10 子任务 3:∑N ≤ 10³,K ≤ 13,分值 10 子任务 4:∑N ≤ 10⁵,K ≤ 3,分值 20 子任务 5:∑N ≤ 10⁵,K ≤ 13,分值 20 子任务 6:∑N ≤ 10⁶,K ≤ 13,分值 30 用C++ 14 With O2的语言写一段代码,不要超时,不要注释,用万能头,变量名用一个字母表示,最终代码写好后随便写5组边缘样例测试一下刚刚写的代码(把代码放进编译器输出检查),然后根据刚刚的代码测试修改代码,将这两段代码里的变量名用一个字母替代。代码加上空格,使代码有可读性(实在拿不到全分,也可以拿部分分,尽量多拿!)注意加上文件读写!!!!!!!!!!
07-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值