深度学习下运维日志分析的趋势解读与应用实践

本文介绍了日志分析的现状,强调了深度学习在日志压缩、解析和挖掘中的作用。分享了日志异常检测的前沿工作,如DeepLog、LogRobust、HitAnomaly和Logsy等模型,并提出了自研模型Translog,该模型通过迁移学习解决低资源日志数据源的检测问题,并实现了模型参数的高效利用。未来趋势包括无监督学习、多模态融合和预训练模型在运维领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

云智慧 AIOps 社区是由云智慧发起,针对运维业务场景,提供算法、算力、数据集整体的服务体系及智能运维业务场景的解决方案交流社区。该社区致力于传播 AIOps 技术,旨在与各行业客户、用户、研究者和开发者们共同解决智能运维行业技术难题,推动 AIOps 技术在企业中落地,建设健康共赢的AIOps 开发者生态。

前言

日志分析作为AIOps(人工智能与运维领域相结合)的重要子领域正受到学术和工业界日益增长的关注,因此涌现出了许多神经网络与日志分析结合的经典模型,在实际应用中也取得了较好的效果。

本次学术论坛我们邀请了云智慧算法实习生、北京航空航天大学博士在读生郭同学为我们从学术界角度简要介绍该领域与深度学习结合的近期进展。

学术论坛内容

一、日志研究概述

二、学术前沿工作分享

三、自研模型分享

四、总结

一、日志研究概述

  1. 研究现状

日志数据由系统运行产生,它详尽描述了系统大规模内部事件以及用户的意图。随着大规模IT系统的快速发展,日志数据的数量已经增长到传统方法难以分析的程度。除此之外,日志的标签获取与标注也比较困难。下图展示了从代码到日志的过程,相同系统的日志也会产生个性化内容,我们可以在代码中定义任何我们想要的系统反馈。

为解决上述瓶颈,运维人员尝试通过集成人工智能算法来增强IT运维能力,由此诞生过一批基于传统机器学习算法。近些年,随着计算算力发展和数据体量增大,深度学习技术开始被用于日志分析领域,研究者们认为半结构化的日志消息也包含部分系统语义,类似于自然语言语料。因此研究者们纷纷采用语言模型对日志数据进行建模分析,例如LSTM,Transformer等。为解决标签难以获取问题,一批研究者采用自监督、无监督,弱监督、半监督等不需要完整标签的方法,例如近期出现的Log领域的Bert等。也有采用迁移学习、集成学习、持续学习等不同的学习方式去各方面高效提升运维效率。总而言之,研究者们正在深挖深度学习在该领域的研究和应用价值。

  1. 围绕日志展开的任务

对于日志的研究大致可以分为三个方向:Log Compression(日志压缩)、Log Parsing(日志解析)、Log Mining(日志挖掘)。对于日志压缩ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值