PAT甲级 1055 The World's Richest (25point(s))

Forbes magazine publishes every year its list of billionaires based on the annual ranking of the world’s wealthiest people. Now you are supposed to simulate this job, but concentrate only on the people in a certain range of ages. That is, given the net worths of N people, you must find the M richest people in a given range of their ages.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers: N (≤10^5 ) - the total number of people, and K (≤​10^3​​ ) - the number of queries. Then N lines follow, each contains the name (string of no more than 8 characters without space), age (integer in (0, 200]), and the net worth (integer in [-10^6
,10^6​​ ]) of a person. Finally there are K lines of queries, each contains three positive integers: M (≤100) - the maximum number of outputs, and [Amin, Amax] which are the range of ages. All the numbers in a line are separated by a space.
Output Specification:
For each query, first print in a line Case #X: where X is the query number starting from 1. Then output the M richest people with their ages in the range [Amin, Amax]. Each person’s information occupies a line, in the format

Name Age Net_Worth
The outputs must be in non-increasing order of the net worths. In case there are equal worths, it must be in non-decreasing order of the ages. If both worths and ages are the same, then the output must be in non-decreasing alphabetical order of the names. It is guaranteed that there is no two persons share all the same of the three pieces of information. In case no one is found, output None.
Sample Input:
12 4
Zoe_Bill 35 2333
Bob_Volk 24 5888
Anny_Cin 95 999999
Williams 30 -22
Cindy 76 76000
Alice 18 88888
Joe_Mike 32 3222
Michael 5 300000
Rosemary 40 5888
Dobby 24 5888
Billy 24 5888
Nobody 5 0
4 15 45
4 30 35
4 5 95
1 45 50
Sample Output:
Case #1:
Alice 18 88888
Billy 24 5888
Bob_Volk 24 5888
Dobby 24 5888
Case #2:
Joe_Mike 32 3222
Zoe_Bill 35 2333
Williams 30 -22
Case #3:
Anny_Cin 95 999999
Michael 5 300000
Alice 18 88888
Cindy 76 76000
Case #4:
None
这题没啥好说的按题目要求来写就行了,唯一注意一点就是在查找循环中要写一个break条件判断不然第二个节点会超时
AC代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<vector>
#include<cstring>
using namespace std;
struct people{
char name[10];
int  worth;
int age;
};
bool cmp(people &a,people &b){
if(a.worth!=b.worth)
    return a.worth>b.worth;
else if(a.age!=b.age)
    return a.age<b.age;
else
    return strcmp(a.name,b.name)<0;
}
vector<people>v;
int main(){
int n,k,m,amin,amax,count;
people temp;
scanf("%d %d",&n,&k);
for(int i=0;i<n;i++){
    scanf("%s %d %d",temp.name,&temp.age,&temp.worth);
    v.push_back(temp);
}
sort(v.begin(),v.end(),cmp);
for(int i=0;i<k;i++){
    count=0;
scanf("%d %d %d",&m,&amin,&amax);
printf("Case #%d:\n",i+1);
for(int j=0;j<n;j++){
    if(v[j].age>=amin&&v[j].age<=amax&&count<m){
        printf("%s %d %d\n",v[j].name,v[j].age,v[j].worth);
        count++;
        if(count==m)
            break;
    }
}
if(count==0){
    printf("None\n");
}
}
system("pause");
return 0;
}
内容概要:本书《Deep Reinforcement Learning with Guaranteed Performance》探讨了基于李雅普诺夫方法的深度强化学习及其在非线性系统最优控制中的应用。书中提出了一种近似最优自适应控制方法,结合泰勒展开、神经网络、估计器设计及滑模控制思想,解决了不同场景下的跟踪控制问题。该方法不仅保证了性能指标的渐近收敛,还确保了跟踪误差的渐近收敛至零。此外,书中还涉及了执行器饱和、冗余解析等问题,并提出了新的冗余解析方法,验证了所提方法的有效性和优越性。 适合人群:研究生及以上学历的研究人员,特别是从事自适应/最优控制、机器人学和动态神经网络领域的学术界和工业界研究人员。 使用场景及目标:①研究非线性系统的最优控制问题,特别是在存在输入约束和系统动力学的情况下;②解决带有参数不确定性的线性和非线性系统的跟踪控制问题;③探索基于李雅普诺夫方法的深度强化学习在非线性系统控制中的应用;④设计和验证针对冗余机械臂的新型冗余解析方法。 其他说明:本书分为七章,每章内容相对独立,便于读者理解。书中不仅提供了理论分析,还通过实际应用(如欠驱动船舶、冗余机械臂)验证了所提方法的有效性。此外,作者鼓励读者通过仿真和实验进一步验证书中提出的理论和技术。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值