Apache Doris + Iceberg 快速搭建指南|Lakehouse 使用手册(三)

湖仓一体(Data Lakehouse)融合了数据仓库的高性能、实时性以及数据湖的低成本、灵活性等优势,能够更加便捷地满足各种数据处理分析的需求。Apache Doris 持续加深与数据湖的融合,已演进出一套成熟的湖仓一体解决方案。我们将通过一系列文章介绍 Apache Doris 与各类主流数据湖格式及存储系统的湖仓一体架构搭建指南,包括 HudiPaimon、Iceberg、OSS、Delta Lake、Kudu、BigQuery 等。

本文将继续为大家介绍 Lakehouse 使用手册(三)之 Apache Doris + Apache Iceberg 快速搭建指南。

Apache Doris + Apache Iceberg

Apache Iceberg 是一种开源、高性能、高可靠的数据湖表格式,可实现超大规模数据的分析与管理。它支持 Apache Doris 在内的多种主流查询引擎,兼容 HDFS 以及各种对象云存储,具备 ACID、Schema 演进、高级过滤、隐藏分区和分区布局演进等特性,可确保高性能查询以及数据的可靠性及一致性,其时间旅行和版本回滚功能也为数据管理带来较高的灵活性。

Apache Doris 对 Iceberg 多项核心特性提供了原生支持:

  • 支持 Hive Metastore、Hadoop、REST、Glue、Google Dataproc Metastore、DLF 等多种 Iceberg Catalog 类型。

  • 原生支持 Iceberg V1/V2 表格式,以及 Position Delete、Equality Delete 文件的读取。

  • 支持通过表函数查询 Iceberg 表快照历史。

  • 支持时间旅行(Time Travel)功能。

  • 原生支持 Iceberg 表引擎。可以通过 Apache Doris 直接创建、管理以及将数据写入到 Iceberg 表。支持完善的分区 Transform 函数,从而提供隐藏分区和分区布局演进等能力。

用户可以基于 Apache Doris + Apache Iceberg快速构建高效的湖仓一体解决方案,以灵活应对实时数据分析与处理的各种需求:

  • 通过 Doris 高性能查询引擎对 Iceberg 表数据和其他数据源进行关联数据分析,构建统一的联邦数据分析平台

  • 通过 Doris 直接管理和构建 Iceberg 表,在 Doris 中完成对数据的清洗、加工并写入到 Iceberg 表,构建统一的湖仓数据处理平台

  • 通过 Iceberg 表引擎,将 Doris 数据共享给其他上下游系统做进一步处理,构建统一的开放数据存储平台

未来 ,Apache Iceberg 将作为 Apache Doris 的原生表引擎之一,提供更加完善的湖格式数据的分析、管理功能。 Apache Doris 也将逐步支持包括 Update/Delete/Merge、写回时排序、增量数据读取、元数据管理等 Apache Iceberg 更多高级特性,共同构建统一、高性能、实时的湖仓平台。

接下来,为读者讲解如何在 Docker 环境下快速搭建 Apache Doris + Apache Iceberg 测试 & 演示环境,并展示各功能的使用操作。

使用指南

本文涉及脚本&代码从该地址获取:https://github.com/apache/doris/tree/master/samples/datalake/iceberg_and_paimon

01 环境准备

本文示例采用 Docker Compose 部署,组件及版本号如下:

02 环境部署

1. 启动所有组件

bash ./start_all.sh

2. 启动后,可以使用如下脚本,登陆 Doris 命令行:

bash ./start_doris_client.sh

03 创建 Iceberg 表

1. 首先登陆 Doris 命令行后,Doris 集群中已经创建了名为 Iceberg 的 Catalog(可通过 SHOW CATALOGS/ SHOW CREATE CATALOG iceberg查看)。以下为该 Catalog 的创建语句:

-- 已创建,无需执行
CREATE CATALOG `iceberg` PROPERTIES (
    "type" = "iceberg",
    "iceberg.catalog.type" = "rest",
    "warehouse" = "s3://warehouse/",
    "uri" = "http://rest:8181",
    "s3.access_key" = "admin",
    "s3.secret_key" = "password",
    "s3.endpoint" = "http://minio:9000"
);

2. 在 Iceberg Catalog 创建数据库和 Iceberg 表:

  mysql> SWITCH iceberg;
  Query OK, 0 rows affected (0.00 sec)

  mysql> CREATE DATABASE nyc;
  Query OK, 0 rows affected (0.12 sec)

  mysql> CREATE TABLE iceberg.nyc.taxis
         (
             vendor_id BIGINT,
             trip_id BIGINT,
             trip_distance FLOAT,
             fare_amount DOUBLE,
             store_and_fwd_flag STRING,
             ts DATETIME
         )
         PARTITION BY LIST (
Apache DorisIceberg 多项核心特性提供了原生支持,其使用方法如下: 1. **配置 Iceberg Catalog**:支持 Hive Metastore、Hadoop、REST、Glue、Google Dataproc Metastore、DLF 等多种 Iceberg Catalog 类型,可根据实际需求进行配置 [^1]。 2. **创建 Iceberg 表**:可通过 Apache Doris 直接创建 Iceberg 表,还能使用完善的分区 Transform 函数,提供隐藏分区和分区布局演进等能力。例如创建分区 Iceberg 表的 SQL 示例如下 [^1][^5]: ```sql -- Create partitioned iceberg table -- The partition columns must be in table's column definition list CREATE TABLE sales ( ts DATETIME, user_id BIGINT, amount DOUBLE, pt1 STRING, pt2 STRING ) ENGINE=iceberg -- Iceberg 中的分区类型对应 Doris 中的 List 分区 PARTITION BY LIST (DAY(ts), pt1, pt2) () PROPERTIES ( -- 压缩格式 -- Parquet:snappy,zstd(默认),plain。(plain 就是不采用压缩) -- ORC:snappy,zlib(默认),zstd,plain。(plain 就是不采用压缩) 'write-format'='orc', 'compression-codec'='zlib' ); ``` 3. **查询 Iceberg 表**:原生支持 Iceberg V1/V2 表格式,以及 Position Delete、Equality Delete 文件的读取,还支持通过表函数查询 Iceberg 表快照历史和时间旅行(Time Travel)功能。可通过 Doris 统一查询入口完成对 Iceberg 里的数据查询分析,Iceberg 外表的数据可以和 Doris 内部数据或者 Doris 其他外部数据源的数据进行关联查询分析 [^1][^2]。 4. **导入数据**:有两种方式,Doris Broker 不会消耗 Spark 的计算资源,但增加 Iceberg 的存储消耗;而 Spark 消耗计算资源,减少存储的使用,可根据不同业务场景选择 [^4]。 需要注意的是,doris 0.13 与 1.13 版的联邦查询用法不同,旧用法在新版中已废弃,可从官网查找相关用法:https://doris.apache.org/zh-CN/docs/dev/lakehouse/multi-catalog/hive 、https://doris.apache.org/zh-CN/docs/dev/lakehouse/multi-catalog/iceberg [^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SelectDB技术团队

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值