吴恩达机器学习笔记week1——初识机器学习

本文介绍了机器学习的基本概念,由数据库挖掘和自动化应用背景引入,阐述了机器学习是计算机的一种新能力。文章详细讲解了机器学习的定义,强调了通过经验E在任务T上利用性能度量P进行优化。接着,讨论了监督学习,包括回归问题和分类问题,以及无监督学习,如聚类问题。无监督学习的例子中提到了鸡尾酒会算法。

1-1.欢迎参加《机器学习》课程

Machine Learning

  • Grew out of work in Al
  • New capability for computers

Examples:

  • Database mining
    Large datasets from growth of automation/web.
    E.g., Web click data, medical records, biology,engineering
  • Applications can’t program by hand.
    E.g.,Autonomous helicopter, handwriting recognition, most of
    Natural Language Processing(NLP), ComputerVision.
  • Self-customizing programs
    E.g.,Amazon,Netflix product recommendations
  • Understanding human learning(brain, real Al).

1-2.什么是机器学习?

  • 何为机器学习?
    A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.
    理解:通过实验E,完成某一项任务T,利用评价标准P对实验结果进行迭代优化!
  • 机器学习主要包括监督学习(supervised)和无监督学习(unsupervised),其他的还有增强学习(reinforcement learning),推荐系统(recommender systems)等。

1-3.监督学习

监督学习是指实验数据当中有可参考的正确输出(right answer),通常包括回归问题和分类问题。

  • 回归问题(regression problem)是指预测的值,也就是实验结果是连续的,有准确的数值。
  • 分类问题(classification problem)是指实验结果是离散的,不是一个准确的数值。

1-4.无监督学习

无监督学习指聚类问题,不同于分类。如鸡尾酒会算法,在鸡尾酒会中分辨出人的声音和会场的音乐。

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值