Eqs | ||||||
| ||||||
Description | ||||||
Consider equations having the following form:
a1x1 3+ a2x2 3+ a3x3 3+ a4x4 3+ a5x5 3=0 The coefficients are given integers from the interval [-50,50]. It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. Determine how many solutions satisfy the given equation. | ||||||
Input | ||||||
For each test case : Line 1: Five coefficients a1, a2, a3, a4, a5, separated by blanks. Process to the end of file. | ||||||
Output | ||||||
For each test case : Line 1: A single integer that is the number of the solutions for the given equation.(The output will fit in 32 bit signed integers.) | ||||||
Sample Input | ||||||
37 29 41 43 47
| ||||||
Sample Output | ||||||
654
给你五个数a1,a2,a3,a4,a5,让你求出满足a1x1
3+ a2x2
3+ a3x3
3+ a4x4
3+ a5x5
3=0 的解有多少个,xi的范围是-50到50,这题拿来一看就不可能是暴力,但我们可以把式子拆开,分别求a1x1
3+ a2x2
3和 a3x3
3+ a4x4
3+ a5x5
3,这样复杂度就从O^5变成了O^3+O^2,两次的值用hash表存一下就好
|