用Python做人脸识别,简单易学!

本文介绍了Python在人脸识别领域的应用,包括人脸检测的HOG算法和基于深度学习的Dlib库。通过理解HOG特征提取和Dlib的深度卷积神经网络模型,可以实现高效的人脸识别。

Python是一种计算机编程语言以及配套的软件工具和库。Python简单易学,代码十分简洁,它使用强制空白符作为缩进,这大大提高了Python的开发效率,使用Python能够在更短的时间内完成更多的工作。Python是一门开源的语言,并且Python还有许多强大的开源库,这些库使得Python无论是对云计算、大数据、还是人工智能,都有很强的支持能力。

01 人脸识别

人脸识别是计算机视觉领域的典型,也是最成功的识别应用。

人脸识别可用于人机交互、身份验证、患者监护等多种应用场景。首先需要通过人脸检测找到画面中的所有人脸,通过使用HOG算法进行人脸检测,分析面部特征,HOG算法虽然可以检测出人脸,但无法对人脸进行识别,人脸识别的特征提取通过训练卷积神经网络,为每张人脸生成128个特征值,改特征向量可以很好的表示人脸数据,使得不同人脸的两个特征向量距离尽可能大,同一张人脸的两个特征向量尽可能小,这样就可以通过特征向量进行人脸识别了。





02 HOG

HOG的主要思想是:在一副图像中,局部目标的表象和形状(appearance and shape)能够被梯度或边缘的方向密度分布(即梯度的统计信息,而梯度主要位于边缘的地方)很好地描述。HOG特征检测算法的几个步骤:颜色空间归一化—>梯度计算—>梯度方向直方图—>重叠块直方图归一化—>HOG特征。如下图所示:

03 Dlib

Dlib中的人脸识别算法基于深度卷积神经网络(Deep Convolutional Neural Networks,DCNNs)实现。其中,用于提取人脸特征的模型是一个带有128维输出的卷积神经网络,它使用ResNet架构(Residual Networks,残差网络)进行训练。

---------------------------END---------------------------

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉优快云大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img

img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值