Convert Sorted List to Binary Search Tree

本文介绍了一种将有序链表转换为高度平衡二叉搜索树的有效方法。通过在链表中间位置选取节点作为根节点,并递归地构造左右子树,实现了O(n log n)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Convert Sorted List to Binary Search TreeOct 3 '123397 / 9589

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

 

刚开始想用课本上的构造平衡二叉树的方法,当不满足时,回溯,旋转,结果在运行大的数据时,超时。

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    void insertBST(TreeNode* &root, int val)
    {
        if(root == NULL)
        {
            root = new TreeNode(val);
        }
        else if(val > root->val)
        {
            insertBST(root->right, val);
        }
        else if(val < root->val)
        {
            insertBST(root->left, val);
        }
    }
    void turnLeft(TreeNode* &root)
    {
        
        TreeNode* tempCR = root->right->left;
        root->right->left = root;        
        root = root->right;
        root->left->right = tempCR;
    }
    int adjust(TreeNode* &root)
    {
        if(root)
        {
            int hl = adjust(root->left);
            int hr = adjust(root->right);
            if(hr > hl + 1)
            {
                turnLeft(root);
                return max(hl, hr);
            }
            return max(hl, hr)+1;
        }
        return 0;
    }
    TreeNode *sortedListToBST(ListNode *head) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        if(head == NULL)
            return NULL;
        TreeNode* root = NULL;
        while(head)
        {
            insertBST(root, head->val);
            adjust(root);
            head = head->next;
        }
        return root;
    }
};


 

后来,想直接在中间节点分开,递归构造。复杂度应该为nlogn
/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
/**
 * Definition for binary tree
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* buildTree(ListNode* head, int len)
    {
        if(head && len > 0)
        {
            int l = len/2;
            ListNode* p = head;
            int count = 0;
            while(p && count < l)
            {
                count ++;
                p = p->next;
            }
            TreeNode* tre = new TreeNode(p->val);
            TreeNode* lc = buildTree(head, count);
            TreeNode* lr = buildTree(p->next, len - count -1);
            tre->left = lc;
            tre->right = lr;
            return tre;
        }
        return NULL;
    }
    TreeNode *sortedListToBST(ListNode *head) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int len = 0;
        ListNode* p = head;
        while(p)
        {
            len ++;
            p = p ->next;
        }
        return buildTree(head,len);
    }
};

 
【Solution】 To convert a binary search tree into a sorted circular doubly linked list, we can use the following steps: 1. Inorder traversal of the binary search tree to get the elements in sorted order. 2. Create a doubly linked list and add the elements from the inorder traversal to it. 3. Make the list circular by connecting the head and tail nodes. 4. Return the head node of the circular doubly linked list. Here's the Python code for the solution: ``` class Node: def __init__(self, val): self.val = val self.prev = None self.next = None def tree_to_doubly_list(root): if not root: return None stack = [] cur = root head = None prev = None while cur or stack: while cur: stack.append(cur) cur = cur.left cur = stack.pop() if not head: head = cur if prev: prev.right = cur cur.left = prev prev = cur cur = cur.right head.left = prev prev.right = head return head ``` To verify the accuracy of the code, we can use the following test cases: ``` # Test case 1 # Input: [4,2,5,1,3] # Output: # Binary search tree: # 4 # / \ # 2 5 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 <-> 4 <-> 5 # Doubly linked list in reverse order: 5 <-> 4 <-> 3 <-> 2 <-> 1 root = Node(4) root.left = Node(2) root.right = Node(5) root.left.left = Node(1) root.left.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) # Test case 2 # Input: [2,1,3] # Output: # Binary search tree: # 2 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 # Doubly linked list in reverse order: 3 <-> 2 <-> 1 root = Node(2) root.left = Node(1) root.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) ``` The output of the test cases should match the expected output as commented in the code.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值