题目描述
Farmer John’s N (1 <= N <= 100,000) cows, conveniently numbered 1..N, are once again standing in a row. Cow i has height H_i (1 <= H_i <= 1,000,000).
Each cow is looking to her left toward those with higher index numbers. We say that cow i ‘looks up’ to cow j if i < j and H_i < H_j. For each cow i, FJ would like to know the index of the first cow in line looked up to by cow i.
Note: about 50% of the test data will have N <= 1,000.
约翰的N(1≤N≤10^5)头奶牛站成一排,奶牛i的身高是Hi(l≤Hi≤1,000,000).现在,每只奶牛都在向右看齐.对于奶牛i,如果奶牛j满足i
Input
输入输出格式
输入格式:
* Line 1: A single integer: N
- Lines 2..N+1: Line i+1 contains the single integer: H_i
第 1 行输入 N,之后每行输入一个身高 H_i。
输出格式:
* Lines 1..N: Line i contains a single integer representing the smallest index of a cow up to which cow i looks. If no such cow exists, print 0.
共 N 行,按顺序每行输出一只奶牛的最近仰望对象,如果没有仰望对象,输出 0。
输入输出样例
输入样例#1:
6
3
2
6
1
1
2
输出样例#1:
3
3
0
6
6
0
说明
FJ has six cows of heights 3, 2, 6, 1, 1, and 2.
Cows 1 and 2 both look up to cow 3; cows 4 and 5 both look up to cow 6; and cows 3 and 6 do not look up to any cow.
【输入说明】6 头奶牛的身高分别为 3, 2, 6, 1, 1, 2.
【输出说明】奶牛#1,#2 仰望奶牛#3,奶牛#4,#5 仰望奶牛#6,奶牛#3 和#6 没有仰望对象。
【数据规模】
对于 20%的数据: 1≤N≤10;
对于 50%的数据: 1≤N≤1,000;
对于 100%的数据:1≤N≤100,000;1≤H_i≤1,000,000;
题解:
本题是模拟题(当然,也有人用栈来写)
答案要求最近仰慕对象,而只能像右仰慕,便想到了先for1~n,再从右往左枚举(这样就会更新到最近的了)。但如果一个一个枚举的话会超时,所以不能套两个for。
经过思考,我们发现如果对于i点,j点不能够成为它的仰慕对象,那么j点的仰慕对象能不能成为i点的仰慕对象呢?这就产生了类似链表的结构,而时间复杂度应当是O(n log n)的吧。
#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
int n,j;
int h[100010],f[100010];
int main(){
scanf("%d",&n);
for (int i=1; i<=n; i++) scanf("%d",&h[i]);
for (int i=n-1; i>=1; i--){//先处理后面牛牛(j)的仰慕对象,方便后面牛牛(j)不能够成为的前面牛牛(i)仰慕对象时,去找j牛牛的仰慕对象
j=i+1;
while(h[i]>=h[j] && h[j]>0)j=f[j];
f[i]=j;
}
for (int i=1; i<=n; i++) printf("%d\n",f[i]);
return 0;
}