【洛谷_P2015】二叉苹果树

这是一篇关于解决二叉苹果树剪枝问题的博客,利用动态规划(DP)方法,寻找在保留一定数量树枝的情况下,最大化保留苹果数的策略。题目描述了一棵所有节点都有两个子节点的苹果树,给出树的节点数、需要保留的树枝数及每个树枝上的苹果数,要求计算最大能保留的苹果数。解题思路包括定义状态转移方程,实现时间复杂度为O(n^2)的DFS解决方案。

二叉苹果树


题目描述

有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)
这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。
我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2   5
 \ / 
  3   4
   \ /
    1

现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。
给定需要保留的树枝数量,求出最多能留住多少苹果。

输入格式

第1行2个数,N和Q(1<=Q<= N,1<N<=100)。
N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。
每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。
每根树枝上的苹果不超过30000个。

输出格式

一个数,最多能留住的苹果的数量。

输入输出样例

#输出 #1## 输入 #1

5 2
1 3 1
1 4 10
2 3 20
3 5 20

输出 #1

21

解题思路

很明显,这是一道DP,我们用F[now][i]表示以第now(我们使用DFS进行DP)个点为根的子树选择i个点(我们事先把边转换成点)的最大值,动态转移方程为:
f[now][k]=max(f[now][k],f[tree[now][1]][i]+f[tree[now][2]][k−i−1]+num[now]);f[now][k]=max(f[now][k],f[tree[now][1]][i]+f[tree[now][2]][k-i-1]+num[now]);f[now][k]=max(f[now][k],f[tree[now][1]][i]+f[tree[now][2]][ki1]+num[now]);
我们外面套一层DFS,那么时间复杂度为O(n2)。代码如下:

#include<iostream>
#include<cstdio>
using namespace std;

int n,q,a[110][110];
int tree[110][3],num[110],f[110][110];

void build(int now)
{
	int lr=0;
	for(int i=0;i<=n;i++)
		if(a[now][i]>=0)
		{
			lr++;
			tree[now][lr]=i;
			num[i]=a[now][i];
			a[now][i]=a[i][now]=-1;
			build(i);
			if(lr==2)
				return;
		}
}

void dfs(int now,int k)
{
	if(k==0)
		f[now][k]=0;
	else if(tree[now][1]==0&&tree[now][2]==0)
		f[now][k]=num[now];
	else
	{
		f[now][k]=0;
		for(int i=0;i<k;i++)
		{
			if(f[tree[now][1]][i]==0)
				dfs(tree[now][1],i);
			if(f[tree[now][2]][k-i-1]==0)
				dfs(tree[now][2],k-i-1);
			f[now][k]=max(f[now][k],f[tree[now][1]][i]+f[tree[now][2]][k-i-1]+num[now]);
		}
	}
}

int main()
{
	cin>>n>>q;
	for(int i=0;i<=n;i++)	
		for(int j=0;j<=n;j++)
			a[i][j]=a[j][i]=-1;
	for(int i=1;i<n;i++)
	{
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		a[x][y]=z;
		a[y][x]=z;
	}
	build(1);
	dfs(1,q+1);
	cout<<f[1][q+1]<<endl;
	return 0;
}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值