题目描述
有一个m × m的棋盘,棋盘上每一个格子可能是红色、黄色或没有任何颜色的。你现在要从棋盘的最左上角走到棋盘的最右下角。
任何一个时刻,你所站在的位置必须是有颜色的(不能是无色的), 你只能向上、 下、左、 右四个方向前进。当你从一个格子走向另一个格子时,如果两个格子的颜色相同,那你不需要花费金币;如果不同,则你需要花费 1 个金币。
另外, 你可以花费 2 个金币施展魔法让下一个无色格子暂时变为你指定的颜色。但这个魔法不能连续使用, 而且这个魔法的持续时间很短,也就是说,如果你使用了这个魔法,走到了这个暂时有颜色的格子上,你就不能继续使用魔法; 只有当你离开这个位置,走到一个本来就有颜色的格子上的时候,你才能继续使用这个魔法,而当你离开了这个位置(施展魔法使得变为有颜色的格子)时,这个格子恢复为无色。
现在你要从棋盘的最左上角,走到棋盘的最右下角,求花费的最少金币是多少?
输入输出格式
输入格式:
数据的第一行包含两个正整数 m, n,以一个空格分开,分别代表棋盘的大小,棋盘上有颜色的格子的数量。
接下来的 n 行,每行三个正整数 x, y, c, 分别表示坐标为( x, y)的格子有颜色 c。
其中 c=1 代表黄色, c=0 代表红色。 相邻两个数之间用一个空格隔开。 棋盘左上角的坐标为( 1, 1),右下角的坐标为( m, m)。
棋盘上其余的格子都是无色。保证棋盘的左上角,也就是( 1, 1) 一定是有颜色的。
输出格式:
输出一行,一个整数,表示花费的金币的最小值,如果无法到达,输出-1。
分析
关于这题我很想骂人呢
因为我看别人的正解也是记忆化搜索,我也是记忆化搜索,为啥我错了呢
然后看了半天,发现自己考场写的东西自己都看不懂了
于是重构一波代码,才知道这题那么简单(数据贼水)
首先我们用DFS,然后写题解的蒟蒻(比我还6的蒟蒻。。)认为记忆化属于给搜索剪枝
算了你认为是什么就什么吧
然后具体方