gbdt+LR做推荐

本文介绍了使用GBDT和LR构建推荐系统的方法,重点讨论了模型结构、特征转换和实验分析。通过GBDT进行特征工程,然后利用LR进行预测,结果显示GBDT+LR组合在CTR预测上表现出色。文章还探讨了在线训练、特征重要性和大数据量处理策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hi各位大佬好,我是菜鸟小明哥,上周吹牛逼的东西这周要整出个雏形来,效果无所谓,要能跑。于是乎我翻阅了相关博文及原始paper,准备搞下基本的流程,这个毕竟也是最朴素的方法,简单的不会一两个感觉有点不接地气。脸书的原文:Practical Lessons from Predicting Clicks on Ads at Facebook,竟然是广告方面的,我喜欢。

For Recommendation in Deep learning QQ Group 102948747

For Visual in deep learning QQ Group 629530787

I'm here waiting for you

不接受这个网页的私聊/私信!!!

前情提要

fb将决策树与LR结合在一起取得了不错的效果,不必惊讶,最重要的是有正确的特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小李飞刀李寻欢

您的欣赏将是我奋斗路上的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值