OpenCV 笔记(30):图像降噪算法——非局部均值滤波

非局部均值滤波(NL-Means)是一种全局图像去噪算法,优于传统的均值滤波。它通过计算图像中像素的相似性来确定权重,进而滤波。NL-Means考虑了图像全局信息,适用于去除多种噪声,但计算量较大。OpenCV提供了NL-Means滤波的实现,可用于灰度和彩色图像的去噪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.  非局部均值滤波

非局部均值滤波(Non-Local Means,NL-Means)是一种非线性的图像去噪算法。它基于图像中的像素具有相似结构这一假设,利用图像的全局信息来对图像进行去噪。

1.1 全局算法 VS 局部算法

非局部均值滤波在计算每个像素点的估计值时,会考虑图像中所有与该像素点具有相似邻域结构的像素点。因此,非局部均值滤波是一种全局算法

那么相对于全局算法的局部算法是什么呢?局部算法是指仅利用图像局部信息进行处理的算法。例如其邻域窗口内的信息,来计算该像素点的估计值。常用的局部算法包括:

  • 均值滤波

  • 中值滤波

  • 高斯滤波

  • 双边滤波

局部算法的优点是计算量小,速度快。但其缺点是去噪效果有限,容易造成图像细节丢失。

1.2 均值滤波和非局部均值滤波的区别

均值滤波:对于图像中的每个像素点,其滤波值是其邻域窗口内所有像素点的平均值。

非局部均值滤波:该算法需要计算图像中所有像素与当前像素之间的相似性。首先需要定义一个大的搜索窗口一个小的邻域窗口。搜索窗口用于搜索与当前像素点具有相似邻域结构的像素点,邻域窗口用于计算像素点之间的相似度。邻域窗口在搜索窗口中滑动,对于搜索窗口内的每个像素点,计算其与当前像素点的邻域窗口的相似度,并将其作为权重。相似度越大则权重越大。

非局部均值滤波的基本原理与均值滤波类似都要取平均值,但是非局部均值滤波在计算中加入了每一个点的权重。

非局部均值滤波是一种比均值滤波更先进的图像去噪方法,但其计算量也更大。

1.3 非局部均值滤波的原理

非局部均值滤波的公式如下:

其中,w(x,y) 是一个权重,表示在原始图像 v 中,像素 x 和像素 y 的相似度。是像素 x 的搜索窗口。是滤波后的图像。

2d3cbf19092145e4c078ac3a92449cd4.jpeg
非局部均值滤波的示意.png

常用的相似度度量方法包括:欧式距离、高斯相似度、L1 范数、L2 范数、MSE 等等。

衡量两个图像块的相似度最常用的方法是计算他们之间的欧氏距离:

其中:

  • n(x) 是一个归一化的因子,是所有权重的和。对每个权重除以该因子后,使得权重满足和为1的条件。

  • a 是高斯核的标准差。在求欧式距离的时候,不同位置的像素的权重是不一样的,距离块的中心越近,权重越大,距离中心越远,权重越小,权重服从高斯分布。实际计算中常常采用均匀分布的权重。

  • h 是滤波系数。控制指数函数的衰减从而改变欧氏距离的权重,h >0 。

非局部均值滤波的复杂度跟图像的大小、搜索窗口的大小、相似度计算方法、权重计算方法密切相关。

2.  非局部均值滤波的实现

下面的例子,是在图像中添加斑点噪声,然后用非局部均值滤波消除噪声。

#include <opencv2/opencv.hpp>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <random>

using namespace std;
using namespace cv;

void addSpeckleNoise(Mat& image, double scale, Mat &dst) {
    dst = image.clone();
    RNG rng;

    dst.forEach<Pixel>([&](Pixel &p, const int * position) -> void {
        int row = position[0];
        int col = position[1];

        double random_value = rng.uniform(0.0, 1.0);
        double noise_intensity = random_value * scale;
        dst.at<Vec3b>(row, col) = dst.at<Vec3b>(row, col) + Vec3b(noise_intensity * 255, noise_intensity * 255, noise_intensity * 255);
    });
}

//NL-means 算法的实现
void nonlocalMeansFilter(Mat& src, Mat& dst, int templeteWindowSize, int searchWindowSize, double h, double sigma = 0.0){
    //邻域的大小不能超过搜索窗口的大小
    if (templeteWindowSize > searchWindowSize){
        cout << "searchWindowSize should be larger than templeteWindowSize" << endl;
        return;
    }

    if (dst.empty())
        dst = Mat::zeros(src.size(), src.type());

    const int tr = templeteWindowSize >> 1;//tr为邻域的中心位置
    const int sr = searchWindowSize >> 1;  //sr为搜索域的中心位置
    const int bb = sr + tr;//需增加的边界宽度
    const int D = searchWindowSize*searchWindowSize;//搜索域中的元素个数
    const int H = D / 2 + 1;//搜索域中的中心点位置
    const double div = 1.0 / (double)D;//均匀分布时,搜索域中的每个点的权重大小
    const int tD = templeteWindowSize*templeteWindowSize;//邻域中的元素个数
    const double tdiv = 1.0 / (double)(tD);//均匀分布时,搜索域中的每个点的权重大小

    //扩充边界
    Mat boardSrc;
    copyMakeBorder(src, boardSrc, bb, bb, bb, bb, cv::BORDER_DEFAULT);

    //weight computation;
    vector<double> weight(256 * 256 * src.channels());
    double* w = &weight[0];
    const double gauss_sd = (sigma == 0.0) ? h : sigma;//高斯标准差
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值