端侧推理新标杆——MiniCPM 4本地部署教程:5%稀疏度实现128K长文本7倍加速,低成本训练开销匹敌Qwen3-8B

MiniCPM 4本地部署教程及高效特性

一、介绍

MiniCPM 4 是一个极致高效的端侧大模型,从模型架构、学习算法、训练数据与推理系统四个层面进行了高效优化,实现了极致的效率提升。

  • 高效模型架构:
    • InfLLM v2 -- 可训练的稀疏注意力机制:采用可训练的稀疏注意力机制架构,在 128K 长文本处理中,每个词元仅需与不足 5% 的词元进行相关性计算,显著降低长文本的计算开销
  •  高效学习算法:
    • 模型风洞 2.0 -- 高效 Predictable Scaling:引入下游任务的 Scaling 预测方法,实现更精准的模型训练配置搜索
    • BitCPM -- 极致的三值量化:将模型参数位宽压缩至 3 值,实现模型位宽 90% 的极致瘦身
    • 高效训练工程优化:采用 FP8 低精度计算技术,结合多词元预测(Multi-token Prediction)训练策略
  • 高知识密度训练数据:
    • UltraClean -- 高质量预训练数据的清洗与合成:构建基于高效验证的迭代式数据清洗策略,开源高质量中英文预训练数据集 UltraFineweb
    • UltraChat v2 -- 高质量有监督微调数据合成:构建大规模高质量有监督微调数据集,涵盖知识密集型数据、推理密集型数据、指令遵循数据、长文本理解数据、工具调用数据等多个维度
  • 高效推理系统:
    • CPM.cu -- 轻量级的高效 CUDA 推理框架:融合了稀疏注意力机制、模型量化与投机采样,充分体现 MiniCPM4 的效
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值