poj 1325 Machine Schedule 题解

探讨一种特定的两台机器调度问题,通过调整作业顺序和分配策略,使用匈牙利算法寻找最优解,以最小化重启次数。
Machine Schedule
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 14479 Accepted: 6172

Description

As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem. 

There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0. 

For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y. 

Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines. 

Input

The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y. 

The input will be terminated by a line containing a single zero. 

Output

The output should be one integer per line, which means the minimal times of restarting machine.

Sample Input

5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0

Sample Output

3

Source

——————————————————————我是华丽丽的分割线————————————————————————————————
二分图最大点覆盖。

最小点集覆盖—— 用最少的点,覆盖所有边。

这里面,边指任务,点指机器模式。

这里面的特点是在任务执行顺序没有要求的条件下才可以使用最小点集覆盖。

这里具体还是使用匈牙利算法,找到最大匹配的边数——实际意义为找到匹配边的其中三个对应点,能够覆盖所有的任务。

 1 /*
 2     Problem:
 3     OJ:     
 4     User:   
 5     Time:   
 6     Memory:  
 7     Length:  
 8 */
 9 #include<iostream>
10 #include<cstdio>
11 #include<cstring>
12 #include<cmath>
13 #include<algorithm>
14 #include<queue>
15 #include<cstdlib>
16 #include<iomanip>
17 #include<cassert>
18 #include<climits>
19 #include<vector>
20 #include<list>
21 #include<map>
22 #define maxn 101
23 #define F(i,j,k) for(int i=j;i<=k;i++)
24 #define M(a,b) memset(a,b,sizeof(a))
25 #define FF(i,j,k) for(int i=j;i>=k;i--)
26 #define inf 0x7fffffff
27 #define maxm 2016
28 #define mod 1000000007
29 //#define LOCAL
30 using namespace std;
31 int read(){
32     int x=0,f=1;char ch=getchar();
33     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
34     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
35     return x*f;
36 }
37 int n,m,k;
38 int mp[maxn][maxn];
39 int px[maxn],py[maxn];
40 int ans;
41 int cx[maxn],cy[maxn];
42 inline int path(int u)
43 {
44     cx[u]=1;
45     F(i,1,m){
46         if(mp[u][i]>0&&!cy[i]){
47             cy[i]=1;
48             if(!py[i]||path(py[i]))
49             {
50                 px[u]=i;
51                 py[i]=u;
52                 return 1;
53             }
54         }
55     }
56     return 0;
57 }
58 inline void solve()
59 {
60     ans=0;
61     M(px,0);M(py,0);
62     F(i,1,n){
63         if(!px[i]){
64             M(cx,0);M(cy,0);
65             ans+=path(i);
66         }
67     }
68     return;
69 }
70 int main()
71 {
72     std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
73     #ifdef LOCAL
74     freopen("data.in","r",stdin);
75     freopen("data.out","w",stdout);
76     #endif
77     while(cin>>n)
78     {
79         if(n==0) break;
80         cin>>m>>k;M(mp,0);
81         F(i,1,k){
82             int a,b,c;
83             cin>>a>>b>>c;
84             mp[b][c]=1;
85         }
86         solve();
87         cout<<ans<<endl;
88     }
89     return 0;
90 }
View Code

 

 
通过短时倒谱(Cepstrogram)计算进行时-倒频分析研究(Matlab代码实现)内容概要:本文主要介绍了一项关于短时倒谱(Cepstrogram)计算在时-倒频分析中的研究,并提供了相应的Matlab代码实现。通过短时倒谱分析方法,能够有效提取信号在时间与倒频率域的特征,适用于语音、机械振动、生物医学等领域的信号处理与故障诊断。文中阐述了倒谱分析的基本原理、短时倒谱的计算流程及其在实际工程中的应用价值,展示了如何利用Matlab进行时-倒频图的可视化与分析,帮助研究人员深入理解非平稳信号的周期性成分与谐波结构。; 适合人群:具备一定信号处理基础,熟悉Matlab编程,从事电子信息、机械工程、生物医学或通信等相关领域科研工作的研究生、工程师及科研人员。; 使用场景及目标:①掌握倒谱分析与短时倒谱的基本理论及其与傅里叶变换的关系;②学习如何用Matlab实现Cepstrogram并应用于实际信号的周期性特征提取与故障诊断;③为语音识别、机械设备状态监测、振动信号分析等研究提供技术支持与方法参考; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,先理解倒谱的基本概念再逐步实现短时倒谱分析,注意参数设置如窗长、重叠率等对结果的影响,同时可将该方法与其他时频分析方法(如STFT、小波变换)进行对比,以提升对信号特征的理解能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值