poj 1325 Machine Schedule 题解

Machine Schedule
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 14479 Accepted: 6172

Description

As we all know, machine scheduling is a very classical problem in computer science and has been studied for a very long history. Scheduling problems differ widely in the nature of the constraints that must be satisfied and the type of schedule desired. Here we consider a 2-machine scheduling problem. 

There are two machines A and B. Machine A has n kinds of working modes, which is called mode_0, mode_1, ..., mode_n-1, likewise machine B has m kinds of working modes, mode_0, mode_1, ... , mode_m-1. At the beginning they are both work at mode_0. 

For k jobs given, each of them can be processed in either one of the two machines in particular mode. For example, job 0 can either be processed in machine A at mode_3 or in machine B at mode_4, job 1 can either be processed in machine A at mode_2 or in machine B at mode_4, and so on. Thus, for job i, the constraint can be represent as a triple (i, x, y), which means it can be processed either in machine A at mode_x, or in machine B at mode_y. 

Obviously, to accomplish all the jobs, we need to change the machine's working mode from time to time, but unfortunately, the machine's working mode can only be changed by restarting it manually. By changing the sequence of the jobs and assigning each job to a suitable machine, please write a program to minimize the times of restarting machines. 

Input

The input file for this program consists of several configurations. The first line of one configuration contains three positive integers: n, m (n, m < 100) and k (k < 1000). The following k lines give the constrains of the k jobs, each line is a triple: i, x, y. 

The input will be terminated by a line containing a single zero. 

Output

The output should be one integer per line, which means the minimal times of restarting machine.

Sample Input

5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0

Sample Output

3

Source

——————————————————————我是华丽丽的分割线————————————————————————————————
二分图最大点覆盖。

最小点集覆盖—— 用最少的点,覆盖所有边。

这里面,边指任务,点指机器模式。

这里面的特点是在任务执行顺序没有要求的条件下才可以使用最小点集覆盖。

这里具体还是使用匈牙利算法,找到最大匹配的边数——实际意义为找到匹配边的其中三个对应点,能够覆盖所有的任务。

 1 /*
 2     Problem:
 3     OJ:     
 4     User:   
 5     Time:   
 6     Memory:  
 7     Length:  
 8 */
 9 #include<iostream>
10 #include<cstdio>
11 #include<cstring>
12 #include<cmath>
13 #include<algorithm>
14 #include<queue>
15 #include<cstdlib>
16 #include<iomanip>
17 #include<cassert>
18 #include<climits>
19 #include<vector>
20 #include<list>
21 #include<map>
22 #define maxn 101
23 #define F(i,j,k) for(int i=j;i<=k;i++)
24 #define M(a,b) memset(a,b,sizeof(a))
25 #define FF(i,j,k) for(int i=j;i>=k;i--)
26 #define inf 0x7fffffff
27 #define maxm 2016
28 #define mod 1000000007
29 //#define LOCAL
30 using namespace std;
31 int read(){
32     int x=0,f=1;char ch=getchar();
33     while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
34     while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
35     return x*f;
36 }
37 int n,m,k;
38 int mp[maxn][maxn];
39 int px[maxn],py[maxn];
40 int ans;
41 int cx[maxn],cy[maxn];
42 inline int path(int u)
43 {
44     cx[u]=1;
45     F(i,1,m){
46         if(mp[u][i]>0&&!cy[i]){
47             cy[i]=1;
48             if(!py[i]||path(py[i]))
49             {
50                 px[u]=i;
51                 py[i]=u;
52                 return 1;
53             }
54         }
55     }
56     return 0;
57 }
58 inline void solve()
59 {
60     ans=0;
61     M(px,0);M(py,0);
62     F(i,1,n){
63         if(!px[i]){
64             M(cx,0);M(cy,0);
65             ans+=path(i);
66         }
67     }
68     return;
69 }
70 int main()
71 {
72     std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y;
73     #ifdef LOCAL
74     freopen("data.in","r",stdin);
75     freopen("data.out","w",stdout);
76     #endif
77     while(cin>>n)
78     {
79         if(n==0) break;
80         cin>>m>>k;M(mp,0);
81         F(i,1,k){
82             int a,b,c;
83             cin>>a>>b>>c;
84             mp[b][c]=1;
85         }
86         solve();
87         cout<<ans<<endl;
88     }
89     return 0;
90 }
View Code

 

 
内容概要:本文详细阐述了DeepSeek大模型在服装行业的应用方案,旨在通过人工智能技术提升服装企业的运营效率和市场竞争力。文章首先介绍了服装行业的现状与挑战,指出传统模式难以应对复杂的市场变化。DeepSeek大模型凭借其强大的数据分析和模式识别能力,能够精准预测市场趋势、优化供应链管理、提升产品设计效率,并实现个性化推荐。具体应用场景包括设计灵感生成、自动化设计、虚拟试衣、需求预测、生产流程优化、精准营销、智能客服、用户体验提升等。此外,文章还探讨了数据安全与隐私保护的重要性,以及技术实施与集成的具体步骤。最后,文章展望了未来市场扩展和技术升级的方向,强调了持续优化和合作的重要性。 适用人群:服装行业的企业管理层、技术负责人、市场和销售团队、供应链管理人员。 使用场景及目标:①通过市场趋势预测和用户偏好分析,提升设计效率和产品创新;②优化供应链管理,减少库存积压和生产浪费;③实现精准营销,提高客户满意度和转化率;④通过智能客服和虚拟试衣技术,提升用户体验;⑤确保数据安全和隐私保护,建立用户信任。 阅读建议:此资源不仅涵盖技术实现的细节,还涉及业务流程的优化和管理策略的调整,建议读者结合实际业务需求,重点关注与自身工作相关的部分,并逐步推进技术的应用和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值