题目链接:BZOJ 3560
首先,可以根据phi函数为积性函数,可以分解质因数,计算每个质因数对答案的贡献,最后乘起来即可。那么现在问题就来了,怎样计算质因数对答案的贡献?我们可以对每个数ai分解质因数,对于它的一个质因数p,记录p出现的次数bi,那么这个质数p对答案的贡献,是对于每个数ai,p的j(1<=j<=bi )次方求积的数的欧拉函数值。然后可以将公式化简。具体化简过程可以参见PoPoQQQ大神的博客:华丽丽的传送门。(不会用公式编辑器的哭了QAQ。)
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
#define LL long long
const int maxn = (int)1e7 + 10;
const int mod = 1000000000 + 7;
int N;
bool vis[4000 + 3];
int prime[4000 + 3];
LL f[maxn];
inline int read(){
int x = 0, f = 1;char ch = getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x * f;
}
void init(){
int tot = 0;
for(int i = 2; i <= 4000; ++i){
if(!vis[i])prime[++tot] = i;
for(int j = 1; j <= tot && i * prime[j] <= 4000; j++){
vis[i * prime[j]] = 1;
if(i % prime[j] == 0)break;
}
}
for(int i = 1; i <= 10000000; ++i)f[i] = 1;
}
LL ni(LL x, LL y, LL m){
LL t = 1;
while(y){
if(y & 1)t = (t * x) % m;
y >>= 1;
x = (x * x) % mod;
}
return t;
}
int main(){
N = read();
init();
for(int i = 1; i <= N; ++i){
int x = read();
for(int j = 1; prime[j] * prime[j] <= x; ++j){
LL t = 1, tot = 1;
while(x % prime[j] == 0){
t = (LL) t * prime[j] % mod;
tot = (tot + t) % mod;
x /= prime[j];
}
f[prime[j]] = (f[prime[j]] * tot) % mod;
}
if(x > 1)f[x] = ((LL) f[x] * x + (LL) f[x]) % mod;
}
LL ans = 1;
for(int i = 2; i <= 10000000; ++i){
if(f[i] == 1)continue;
ans = ans * ((LL) (i - 1) * ni(i, mod - 2, mod) % mod * (f[i] - 1) % mod + 1) % mod;
}
ans = (ans + mod) % mod;
cout << ans << endl;
return 0;
}