import module
import tensorflow as tf
import numpy as np
creat data
# creat 100 random sequences for x_data
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3
creat tensorflow structure start
Weights = tf.Variable(tf.random_uniform([1],-1.0,1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights*x_data + biases
loss = tf.reduce_mean(tf.square(y-y_data))
optomizer = tf.train.GradientDescentOptimizer(0.5) # learning rate
train = optomizer.minimize(loss)
# initialize all variables
# init = tf.initialize_all_variables() #
init = tf.global_variables_initializer()
creat tensorflow structure end
activated neural network
sess = tf.Session()
sess.run(init) # do not forget
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step,sess.run(Weights),sess.run(biases))
result
本文通过使用TensorFlow实现线性回归模型,演示了如何从创建随机数据集开始,逐步构建一个简单的线性回归模型,并利用梯度下降法进行训练以最小化损失函数。文章详细介绍了模型参数初始化、训练过程及最终收敛结果。
2532

被折叠的 条评论
为什么被折叠?



