题解
对于区间询问,我们可以想到莫队,而逆序对则需要用树状数组来维护。
因此我们便可以动态维护区间的逆序对。例如:
- 删除左边的点,要在删去树状数组中比它小的点。加如左边的点,则加入树状数组中比它小的点。
- 删除右边的点,就删除比它大的点,因为右边的点点往往处于逆序对中的较小者,而左边则属于较大者。
然后用莫队和树状数组维护即可。
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int N = 2000000;
int n, m, ans, T, cnt = 0;
int a[N], Ans[N], b[N];
map<int,int>mp;
struct node {
int l, r, k, id;
friend bool operator < (node p1, node p2) {
if (p1.k == p2.k) return p1.r < p2.r;
else return p1.k < p2.k;
}
} q[N];
inline int read(void)
{
int s = 0, w = 1;char c = getchar();
while (c<'0' || c>'9') {if (c == '-') w = -1; c = getchar();}
while (c>='0' && c<='9') s = s*10+c-48,c = getchar();
return s*w;
}
struct TREE {
int S[10000000] = {};
#define lowbit(i) (i & -i)
void add(int x,int v)
{
for (int i=x;i<=n;i+=lowbit(i))
S[i] += v;
return;
}
int ask(int x)
{
int sum = 0;
for (int i=x;i>=1;i-=lowbit(i))
sum += S[i];
return sum;
}
} tree;
void init(void)
{
sort(b+1,b+n+1);
for (int i=1;i<=n;++i)
if (i == 1 || b[i] ^ b[i-1])
mp[b[i]] = ++cnt;
for (int i=1;i<=n;++i)
a[i] = mp[a[i]];
}
int main(void)
{
freopen("sort.in","r",stdin);
freopen("sort.out","w",stdout);
n = read();
for (int i=1;i<=n;++i) a[i] = b[i] = read();
init();
m = read();T = sqrt(m);
for (int i=1;i<=m;++i)
{
q[i].id = i;
q[i].l = read();
q[i].r = read();
q[i].k = (q[i].l+T-1)/T;
}
sort(q+1,q+m+1);
int l = 1, r = 0;
ans = 0;
for (int i=1;i<=m;++i)
{
while (l < q[i].l) tree.add(a[l],-1), ans -= tree.ask(a[l++]-1);
while (l > q[i].l) tree.add(a[--l],1), ans += tree.ask(a[l]-1);
while (r < q[i].r) tree.add(a[++r],1), ans += r-l+1-tree.ask(a[r]);
while (r > q[i].r) tree.add(a[r],-1), ans -= r-l-tree.ask(a[r--]);
Ans[q[i].id] = ans;
}
for (int i=1;i<=m;++i) printf("%d\n", Ans[i]);
return 0;
}