HDU 5119 Happy Matt Friends (DP)2014ICPC 北京站现场赛

本文探讨了如何使用动态规划解决一个与异或操作相关的游戏问题。通过分析游戏规则和状态转移,我们能够高效地计算出满足特定条件的获胜方式数量。

Happy Matt Friends

Time Limit: 6000/6000 MS (Java/Others)    Memory Limit: 510000/510000 K (Java/Others)
Total Submission(s): 1388    Accepted Submission(s): 554


Problem Description
Matt has N friends. They are playing a game together.

Each of Matt’s friends has a magic number. In the game, Matt selects some (could be zero) of his friends. If the xor (exclusive-or) sum of the selected friends’magic numbers is no less than M , Matt wins.

Matt wants to know the number of ways to win.
 

Input
The first line contains only one integer T , which indicates the number of test cases.

For each test case, the first line contains two integers N, M (1 ≤ N ≤ 40, 0 ≤ M ≤ 10 6).

In the second line, there are N integers ki (0 ≤ k i ≤ 10 6), indicating the i-th friend’s magic number.
 

Output
For each test case, output a single line “Case #x: y”, where x is the case number (starting from 1) and y indicates the number of ways where Matt can win.
 

Sample Input
  
2 3 2 1 2 3 3 3 1 2 3
 

Sample Output
  
Case #1: 4 Case #2: 2
Hint
In the first sample, Matt can win by selecting: friend with number 1 and friend with number 2. The xor sum is 3. friend with number 1 and friend with number 3. The xor sum is 2. friend with number 2. The xor sum is 2. friend with number 3. The xor sum is 3. Hence, the answer is 4.
 

题意:输入N和M,表示有N个数供你随机选择,求你选择的这些数(不能有重复的)的异或值大于等于M的方法有多少个,不选异或值就是零,选一个异或值就是本身。

分析:N最大为40,暴力法的复杂度为N!,必然不可行,考虑到N的范围比较小,而且这些数的异或值是有限的。所以想到是一道动态规划题。而异或的最大值为10^6约等于2^20,我们可以在这个范围内枚举异或,对于从第一个数取到第n个数的的结果就是d[n][∑j],j为大于m的异或值,对于每一个阶段,我们可以选择异或a[i]或者不异或,对应的状态转移方程也就是a[i][j]=a[i-1][j]+a[i-1][j^a[i]]。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <cctype>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <sstream>
#include <fstream>
#define debug "output for debug\n"
#define pi (acos(-1.0))
#define eps (1e-8)
#define inf 0x3f3f3f3f
#define ll long long int
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
using namespace std;
const int mod = 1000000007;
const int Max = 2021000;

int t,n,m;
int dp[45][Max];
int a[45];
ll ans;
int main()
{
    scanf("%d",&t);
    int cnt=1;
    while(t--)
    {
        ans=0;
        scanf("%d%d",&n,&m);
        memset(dp,0,sizeof dp);
        dp[0][0]=1;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        //int Maxn=(1<<20);
        //cout<<Maxn<<endl;
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<=(1<<20);j++)
            {
                dp[i][j]=dp[i-1][j]+dp[i-1][j^a[i]];
            }
        }
        for(int i=m;i<=Max;i++)
        {
            ans+=dp[n][i];
        }
        printf("Case #%d: %lld\n",cnt++,ans);
    }
    return 0;
}

题目链接: 点击打开链接





基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值