Problem Description
The inversion number of a given number sequence a1, a2, …, an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, …, an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, …, an-1, an (where m = 0 - the initial seqence)
a2, a3, …, an, a1 (where m = 1)
a3, a4, …, an, a1, a2 (where m = 2)
…
an, a1, a2, …, an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
题目大意
给你一段序列a1,a2,a3,a4,a5,a6,a7,,然后这段序列可以一直调动第一个数字到最后,例如:
a2,a3,a4,a5,a6,a7,a1,…………直到循环了一遍。然后从这么多的序列中求出逆序列最小的一组。注意,序列中的数是0-n-1。
先求出原序列的逆序对。
原序列每个数加1。
将第一个数移到列尾,就会提供n-a[i]个逆序对,减a[i]-1个逆序对。
模拟即可。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int n,a[5005],ans,tmp,c[5005];
int lowbit(int x)
{
return x&(-x);
}
int getsum(int pos)
{
int sum=0;
while(pos>0)
{
sum+=c[pos];
pos-=lowbit(pos);
}
return sum;
}
void add(int pos)
{
while(pos<=n)
{
++c[pos];
pos+=lowbit(pos);
}
}
int main()
{
while(scanf("%d",&n)==1)
{
memset(c,0,sizeof(c));
tmp=0,ans=1e9+7;
for(int i=1;i<=n;i++)
{
scanf("%d",a+i);
++a[i];
}
for(int i=1;i<=n;i++)
{
tmp+=i-1-getsum(a[i]);
add(a[i]);
}
ans=min(tmp,ans);
for(int i=1;i<=n-1;i++)
{
tmp+=n-2*a[i]+1;
ans=min(ans,tmp);
}
printf("%d\n",ans);
}
return 0;
}